JARID2

Last updated
JARID2
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases JARID2 , JMJ, jumonji and AT-rich interaction domain containing 2
External IDs OMIM: 601594; MGI: 104813; HomoloGene: 31279; GeneCards: JARID2; OMA:JARID2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001267040
NM_004973

NM_001205043
NM_001205044
NM_021878
NM_001360281

RefSeq (protein)

NP_001253969
NP_004964

NP_001191972
NP_001191973
NP_068678
NP_001347210

Location (UCSC) Chr 6: 15.25 – 15.52 Mb Chr 13: 44.88 – 45.08 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Protein Jumonji is a protein that in humans is encoded by the JARID2 gene. [5] [6] JARID2 is a member of the alpha-ketoglutarate-dependent hydroxylase superfamily.

Contents

Jarid2 (jumonji, AT rich interactive domain 2) is a protein coding gene that functions as a putative transcription factor. Distinguished as a nuclear protein necessary for mouse embryogenesis, Jarid2 is a member of the jumonji family that contains a DNA binding domain known as the AT-rich interaction domain (ARID). [7] [8] [9] [10] In vitro studies of Jarid2 reveal that ARID along with other functional domains are involved in DNA binding, nuclear localization, transcriptional repression, [11] and recruitment of Polycomb-repressive complex 2 (PRC2). [12] [13] Intracellular mechanisms underlying these interactions remain largely unknown.

In search of developmentally important genes, Jarid2 has previously been identified by gene trap technology as an important factor necessary for organ development. [7] [11] [14] During mouse organogenesis, Jarid2 is involved in the formation of the neural tube and development of the liver, spleen, thymus and cardiovascular system. [15] [16] Continuous Jarid2 expression in the tissues of the heart, highlight its presiding role in the development of both the embryonic and the adult heart. [7] Mutant models of Jarid2 embryos show severe heart malformations, ventricular septal defects, noncompaction of the ventricular wall, and atrial enlargement. [7] Homozygous mutants of Jarid2 are found to die soon after birth. [7] Overexpression of the mouse Jarid2 gene has been reported to repress cardiomyocyte proliferation through it close interaction with retinoblastoma protein (Rb), a master cell cycle regulator. [11] [14] [17] Retinoblastoma-binding protein-2 and the human SMCX protein share regions of homology between mice and humans. [5]

Related Research Articles

<span class="mw-page-title-main">HDAC3</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 3 is an enzyme encoded by the HDAC3 gene in both humans and mice.

<span class="mw-page-title-main">ID2</span> Protein-coding gene in the species Homo sapiens

DNA-binding protein inhibitor ID-2 is a protein that in humans is encoded by the ID2 gene.

<span class="mw-page-title-main">E2F3</span> Protein-coding gene in the species Homo sapiens

Transcription factor E2F3 is a protein that in humans is encoded by the E2F3 gene.

<span class="mw-page-title-main">E2F2</span> Protein-coding gene in the species Homo sapiens

Transcription factor E2F2 is a protein that in humans is encoded by the E2F2 gene.

<span class="mw-page-title-main">RBBP7</span> Protein-coding gene in the species Homo sapiens

Histone-binding protein RBBP7 is a protein that in humans is encoded by the RBBP7 gene.

<span class="mw-page-title-main">Myocyte-specific enhancer factor 2A</span> Protein-coding gene in the species Homo sapiens

Myocyte-specific enhancer factor 2A is a protein that in humans is encoded by the MEF2A gene. MEF2A is a transcription factor in the Mef2 family. In humans it is located on chromosome 15q26. Certain mutations in MEF2A cause an autosomal dominant form of coronary artery disease and myocardial infarction.

<span class="mw-page-title-main">RFX1</span> Protein-coding gene in the species Homo sapiens

MHC class II regulatory factor RFX1 is a protein that, in humans, is encoded by the RFX1 gene located on the short arm of chromosome 19.

<span class="mw-page-title-main">GTF2IRD1</span> Protein-coding gene in the species Homo sapiens

General transcription factor II-I repeat domain-containing protein 1 is a protein that in humans is encoded by the GTF2IRD1 gene.

<span class="mw-page-title-main">PQBP1</span> Protein-coding gene in the species Homo sapiens

Polyglutamine-binding protein 1 (PQBP1) is a protein that in humans is encoded by the PQBP1 gene.

<span class="mw-page-title-main">KDM5A</span> Protein-coding gene in the species Homo sapiens

Lysine-specific demethylase 5A is an enzyme that in humans is encoded by the KDM5A gene.

<span class="mw-page-title-main">POU3F2</span> Protein-coding gene in the species Homo sapiens

POU domain, class 3, transcription factor 2 is a protein that in humans is encoded by the POU3F2 gene.

<span class="mw-page-title-main">HOXB3</span> Protein-coding gene in the species Homo sapiens

Homeobox protein Hox-B3 is a protein that in humans is encoded by the HOXB3 gene.

<span class="mw-page-title-main">GABPB2</span> Protein-coding gene in the species Homo sapiens

GA-binding protein subunit beta-1 is a protein that in humans is encoded by the GABPB1 gene.

<span class="mw-page-title-main">ARID4A</span> Protein-coding gene in humans

AT rich interactive domain 4A (RBP1-like), also known as ARID4A, is a protein which in humans is encoded by the ARID4A gene.

<span class="mw-page-title-main">HSF4</span> Protein-coding gene in the species Homo sapiens

Heat shock factor protein 4 is a protein that in humans is encoded by the HSF4 gene.

<span class="mw-page-title-main">JARID1B</span> Protein-coding gene in the species Homo sapiens

Lysine-specific demethylase 5B also known as histone demethylase JARID1B is a demethylase enzyme that in humans is encoded by the KDM5B gene. JARID1B belongs to the alpha-ketoglutarate-dependent hydroxylase superfamily.

<span class="mw-page-title-main">SNAPC1</span> Protein-coding gene in the species Homo sapiens

snRNA-activating protein complex subunit 1 is a protein that in humans is encoded by the SNAPC1 gene.

<span class="mw-page-title-main">TBX22</span> Protein-coding gene in the species Homo sapiens

T-box transcription factor TBX22 is a protein that in humans is encoded by the TBX22 gene.

<span class="mw-page-title-main">SHOX2</span> Protein-coding gene in the species Homo sapiens

Short-stature homeobox 2, also known as homeobox protein Og12X or paired-related homeobox protein SHOT, is a protein that in humans is encoded by the SHOX2 gene.

<span class="mw-page-title-main">PKNOX2</span> Protein-coding gene in the species Homo sapiens

PBX/Knotted 1 Homeobox 2 (PKNOX2) protein belongs to the three amino acid loop extension (TALE) class of homeodomain proteins, and is encoded by PKNOX2 gene in humans. The protein regulates the transcription of other genes and affects anatomical development.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000008083 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000038518 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 Berge-Lefranc JL, Jay P, Massacrier A, Cau P, Mattei MG, Bauer S, Marsollier C, Berta P, Fontes M (Feb 1997). "Characterization of the human jumonji gene". Hum Mol Genet. 5 (10): 1637–41. doi: 10.1093/hmg/5.10.1637 . PMID   8894700.
  6. "Entrez Gene: JARID2 jumonji, AT rich interactive domain 2".
  7. 1 2 3 4 5 Kim TG, Kraus JC, Chen J, Lee Y (2004). "Jumonji, a critical factor for cardiac development, functions as a transcriptional repressor". J. Biol. Chem. 278 (43): 42247–55. doi: 10.1074/jbc.M307386200 . PMID   12890668.
  8. Mysliwiec MR, Kim TG, Lee Y (2007). "Characterization of zinc finger protein 496 that interacts with jumonji/jarid2". FEBS Letters. 581 (14): 2633–40. Bibcode:2007FEBSL.581.2633M. doi:10.1016/j.febslet.2007.05.006. PMC   2002548 . PMID   17521633.
  9. Takahashi M, Kojima M, Nakajima K, Suzuki-Migishima R, Motegi Y, Yokoyama M, Takeuchi, T (2004). "Cardiac abnormalities cause early lethality of jumonji mutant mice". Biochemical and Biophysical Research Communications. 324 (4): 1319–23. doi:10.1016/j.bbrc.2004.09.203. PMID   15504358.
  10. Toyoda M, Kojima M, Takeuchi T (2000). "Jumonji is a nuclear protein that participates in the negative regulation of cell growth". Biochemical and Biophysical Research Communications. 274 (2): 332–6. doi:10.1006/bbrc.2000.3138. PMID   10913339.
  11. 1 2 3 Klassen SS, Rabkin SW (2008). "Nitric oxide induces gene expression of jumonji and retinoblastoma 2 protein while reducing expression of atrial natriuretic peptide precursor type B in cardiomyocytes". Folia Biologica. 54 (2): 65–70. PMID   18498724.
  12. Pasini D, Cloos PA, Walfridsson J, Olsson L, Bukowski JP, Johansen JV, Helin K (2010). "JARID2 regulates binding of the polycomb repressive complex 2 to target genes in ES cells". Nature. 464 (7286): 306–10. Bibcode:2010Natur.464..306P. doi:10.1038/nature08788. PMID   20075857. S2CID   205219740.
  13. Son J, Shen SS, Margueron R, Reinberg D (2013). "Nucleosome-binding activities within JARID2 and EZH1 regulate the function of PRC2 on chromatin". Genes & Development. 27 (24): 2663–77. doi:10.1101/gad.225888.113. PMC   3877756 . PMID   24352422.
  14. 1 2 Jung J, Mysliwiec MR, Lee Y (2005). "Roles of Jumonji in mouse embryonic development". Developmental Dynamics. 232 (1): 21–32. doi: 10.1002/dvdy.20204 . PMID   15580614. S2CID   31338749.
  15. Motoyama J, Kitajima K, Kojima M, Kondo S, Takeuchi T (1997). "Organogenesis of the liver, thymus and spleen is affected in jumonji mutant mice". Mechanisms of Development. 66 (1–2): 27–37. doi:10.1016/s0925-4773(97)00082-8. PMID   9376320. S2CID   6531281.
  16. Takeuchi T, Yamazaki Y, Katoh-Fukui Y, Tsuchiya R, Kondo S, Motoyama J, Higashinakagawa T (1995). "Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation". Genes & Development. 9 (10): 1211–22. doi: 10.1101/gad.9.10.1211 . PMID   7758946.
  17. Mysliwiec MR, Chen J, Powers PA, Bartley CR, Schneider MD, Lee Y (2000). "Generation of a conditional null allele of jumonji". Genesis. 44 (9): 407–11. doi:10.1002/dvg.20221. PMC   2002517 . PMID   16900512.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.