EGLN2

Last updated
EGLN2
Identifiers
Aliases EGLN2 , EIT6, HIF-PH1, HIFPH1, HPH-1, HPH-3, PHD1, egl-9 family hypoxia inducible factor 2, EIT-6
External IDs OMIM: 606424 MGI: 1932287 HomoloGene: 14204 GeneCards: EGLN2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_080732
NM_017555
NM_053046

NM_053208
NM_001357767

RefSeq (protein)

NP_444274
NP_542770

NP_444438
NP_001344696

Location (UCSC) Chr 19: 40.8 – 40.81 Mb Chr 7: 26.86 – 26.87 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Egl nine homolog 2 is a protein that in humans is encoded by the EGLN2 gene. [5] ELGN2 is an alpha-ketoglutarate-dependent hydroxylase, a superfamily of non-haem iron-containing proteins.

The hypoxia inducible factor (HIF) is a transcriptional complex which is involved in oxygen homeostasis. At normal oxygen levels, the alpha subunit of HIF is targeted for degradation by prolyl hydroxylation. This gene encodes an enzyme responsible for this posttranslational modification. Multiple alternatively spliced variants, encoding the same protein, have been identified. [5]

Related Research Articles

<span class="mw-page-title-main">Hydroxyproline</span> Chemical compound

(2S,4R)-4-Hydroxyproline, or L-hydroxyproline (C5H9O3N), is an amino acid, abbreviated as Hyp or O, e.g., in Protein Data Bank.

Hypoxia-inducible factors (HIFs) are transcription factors that respond to decreases in available oxygen in the cellular environment, or hypoxia. They are only present in parahoxozoan animals.

<span class="mw-page-title-main">SDHB</span> Protein-coding gene in the species Homo sapiens

Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial (SDHB) also known as iron-sulfur subunit of complex II (Ip) is a protein that in humans is encoded by the SDHB gene.

<span class="mw-page-title-main">Von Hippel–Lindau tumor suppressor</span> Mammalian protein found in Homo sapiens

The Von Hippel–Lindau tumor suppressor also known as pVHL is a protein that, in humans, is encoded by the VHL gene. Mutations of the VHL gene are associated with Von Hippel–Lindau disease, which is characterized by hemangioblastomas of the brain, spinal cord and retina. It is also associated with kidney and pancreatic lesions.

<span class="mw-page-title-main">HIF1A</span> Protein-coding gene in the species Homo sapiens

Hypoxia-inducible factor 1-alpha, also known as HIF-1-alpha, is a subunit of a heterodimeric transcription factor hypoxia-inducible factor 1 (HIF-1) that is encoded by the HIF1A gene. The Nobel Prize in Physiology or Medicine 2019 was awarded for the discovery of HIF.

<span class="mw-page-title-main">Procollagen-proline dioxygenase</span> Enzyme

Procollagen-proline dioxygenase, commonly known as prolyl hydroxylase, is a member of the class of enzymes known as alpha-ketoglutarate-dependent hydroxylases. These enzymes catalyze the incorporation of oxygen into organic substrates through a mechanism that requires alpha-Ketoglutaric acid, Fe2+, and ascorbate. This particular enzyme catalyzes the formation of (2S, 4R)-4-hydroxyproline, a compound that represents the most prevalent post-translational modification in the human proteome.

<span class="mw-page-title-main">EPAS1</span> Protein-coding gene in the species Homo sapiens

Endothelial PAS domain-containing protein 1 is a protein that is encoded by the EPAS1 gene in mammals. It is a type of hypoxia-inducible factor, a group of transcription factors involved in the physiological response to oxygen concentration. The gene is active under hypoxic conditions. It is also important in the development of the heart, and for maintaining the catecholamine balance required for protection of the heart. Mutation often leads to neuroendocrine tumors.

<span class="mw-page-title-main">HIF3A</span> Protein-coding gene in the species Homo sapiens

Hypoxia-inducible factor 3 alpha is a protein that in humans is encoded by the HIF3A gene.

<span class="mw-page-title-main">P4HB</span> Protein-coding gene in the species Homo sapiens

Protein disulfide-isomerase, also known as the beta-subunit of prolyl 4-hydroxylase (P4HB), is an enzyme that in humans encoded by the P4HB gene. The human P4HB gene is localized in chromosome 17q25. Unlike other prolyl 4-hydroxylase family proteins, this protein is multifunctional and acts as an oxidoreductase for disulfide formation, breakage, and isomerization. The activity of P4HB is tightly regulated. Both dimer dissociation and substrate binding are likely to enhance its enzymatic activity during the catalysis process.

<span class="mw-page-title-main">EGLN1</span> Protein-coding gene in the species Homo sapiens

Hypoxia-inducible factor prolyl hydroxylase 2 (HIF-PH2), or prolyl hydroxylase domain-containing protein 2 (PHD2), is an enzyme encoded by the EGLN1 gene. It is also known as Egl nine homolog 1. PHD2 is a α-ketoglutarate/2-oxoglutarate-dependent hydroxylase, a superfamily non-haem iron-containing proteins. In humans, PHD2 is one of the three isoforms of hypoxia-inducible factor-proline dioxygenase, which is also known as HIF prolyl-hydroxylase.

<span class="mw-page-title-main">ASPH</span> Protein and coding gene in humans

Aspartyl/asparaginyl beta-hydroxylase (HAAH) is an enzyme that in humans is encoded by the ASPH gene. ASPH is an alpha-ketoglutarate-dependent hydroxylase, a superfamily non-haem iron-containing proteins.

<span class="mw-page-title-main">EGLN3</span> Protein-coding gene in the species Homo sapiens

Egl nine homolog 3 is a protein that in humans is encoded by the EGLN3 gene. ELGN3 is a member of the superfamily of alpha-ketoglutarate-dependent hydroxylases, which are non-haem iron-containing proteins.

<span class="mw-page-title-main">HIF1AN</span> Protein-coding gene in the species Homo sapiens

Hypoxia-inducible factor 1-alpha inhibitor is a protein that in humans is encoded by the HIF1AN gene.

<span class="mw-page-title-main">P4HA1</span> Protein-coding gene in the species Homo sapiens

Prolyl 4-hydroxylase subunit alpha-1 is an enzyme that in humans is encoded by the P4HA1 gene.

<span class="mw-page-title-main">P4HA2</span> Protein-coding gene in the species Homo sapiens

Prolyl 4-hydroxylase subunit alpha-2 is an enzyme that in humans is encoded by the P4HA2 gene.

Hypoxia-inducible factor-proline dioxygenase (EC 1.14.11.29, HIF hydroxylase) is an enzyme with systematic name hypoxia-inducible factor-L-proline, 2-oxoglutarate:oxygen oxidoreductase (4-hydroxylating). This enzyme catalyses the following chemical reaction

Hypoxia-inducible factor-asparagine dioxygenase (EC 1.14.11.30, HIF hydroxylase) is an enzyme with systematic name hypoxia-inducible factor-L-asparagine, 2-oxoglutarate:oxygen oxidoreductase (4-hydroxylating). This enzyme catalyses the following chemical reaction:

hypoxia-inducible factor-L-asparagine + 2-oxoglutarate + O2 hypoxia-inducible factor-(3S)-3-hydroxy-L-asparagine + succinate + CO2

Alpha-ketoglutarate-dependent hydroxylases are a major class of non-heme iron proteins that catalyse a wide range of reactions. These reactions include hydroxylation reactions, demethylations, ring expansions, ring closures, and desaturations. Functionally, the αKG-dependent hydroxylases are comparable to cytochrome P450 enzymes. Both use O2 and reducing equivalents as cosubstrates and both generate water.

Christopher Joseph Schofield is a Professor of Chemistry at the University of Oxford and a Fellow of the Royal Society. Chris Schofield is a professor of organic chemistry at the University of Oxford, Department of Chemistry and a Fellow of Hertford College. Schofield studied functional, structural and mechanistic understanding of enzymes that employ oxygen and 2-oxoglutarate as a co-substrate. His work has opened up new possibilities in antibiotic research, oxygen sensing, and gene regulation.

<span class="mw-page-title-main">P4HTM</span> Protein-coding gene in the species Homo sapiens

Prolyl 4-hydroxylase, transmembrane is a protein that in humans is encoded by the P4HTM gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000269858 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000058709 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: EGLN2 egl nine homolog 2 (C. elegans)".

Further reading