Lysyl hydroxylase

Last updated
procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1
Identifiers
SymbolPLOD1
Alt. symbolsLLH, PLOD
NCBI gene 5351
HGNC 9081
OMIM 153454
RefSeq NM_000302
UniProt Q02809
Other data
EC number 1.14.11.4
Locus Chr. 1 p36.3-36.2
Search for
Structures Swiss-model
Domains InterPro
procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2
Identifiers
SymbolPLOD2
NCBI gene 5352
HGNC 9082
OMIM 601865
RefSeq NM_000935
UniProt O00469
Other data
Locus Chr. 3 q24
Search for
Structures Swiss-model
Domains InterPro

Lysyl hydroxylases (or procollagen-lysine 5-dioxygenases) are alpha-ketoglutarate-dependent hydroxylases enzymes that catalyze the hydroxylation of lysine to hydroxylysine. [1] [2] Lysyl hydroxylases require iron and vitamin C as cofactors for their oxidation activity. It takes place (as a post-translational modification) following collagen synthesis in the cisternae (lumen) of the rough endoplasmic reticulum (ER). There are three lysyl hydroxylases (LH1-3) encoded in the human genome, namely: PLOD1, PLOD2 and PLOD3. From PLOD2 two splice variant can be expressed (LH2a and LH2b), where LH2b differs from LH2a by incorporating the small exon 13A. LH1 and LH3 hydroxylate lysyl residues in the collagen triple helix, whereas LH2b hydroxylates lysyl residues in the telopeptides of collagen. In addition to its hydroxylation activity, LH3 has glycosylation activity that produces either monosaccharide (Gal) or disaccharide (Glc-Gal) attached to collagen hydroxylysines.

Contents

Collagen lysyl hydroxylation is the first step in collagen pyridinoline cross-linking, that is necessary for the stabilization of collagen.

Pathology

Mutations in the PLOD1 gene have been linked to kyphoscoliotic Ehlers–Danlos syndrome (kEDS, in the past EDS VI). [3]
Mutations in the PLOD2 gene have been linked to Bruck syndrome in humans.

A deficiency in its cofactor vitamin C is associated with scurvy.

Related Research Articles

<span class="mw-page-title-main">Collagen</span> Most abundant structural protein in animals

Collagen is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whole-body protein content. Collagen consists of amino acids bound together to form a triple helix of elongated fibril known as a collagen helix. It is mostly found in connective tissue such as cartilage, bones, tendons, ligaments, and skin. Vitamin C is vital for collagen synthesis, and Vitamin E improves the production of collagen.

<span class="mw-page-title-main">Hydroxyproline</span> Chemical compound

(2S,4R)-4-Hydroxyproline, or L-hydroxyproline (C5H9O3N), is an amino acid, abbreviated as Hyp or O, e.g., in Protein Data Bank.

<span class="mw-page-title-main">Ehlers–Danlos syndromes</span> Group of genetic connective tissues disorders

Ehlers–Danlos syndromes (EDS) are a group of 13 genetic connective-tissue disorders. Symptoms often include loose joints, joint pain, stretchy velvety skin, and abnormal scar formation. These may be noticed at birth or in early childhood. Complications may include aortic dissection, joint dislocations, scoliosis, chronic pain, or early osteoarthritis. The current classification was last updated in 2017, when a number of rarer forms of EDS were added.

<span class="mw-page-title-main">Hydroxylysine</span> Chemical compound

Hydroxylysine (Hyl) is an amino acid with the molecular formula C6H14N2O3. It was first discovered in 1921 by Donald Van Slyke as the 5-hydroxylysine form. It arises from a post-translational hydroxy modification of lysine. It is most widely known as a component of collagen.

<span class="mw-page-title-main">Phenylalanine hydroxylase</span> Mammalian protein found in Homo sapiens

Phenylalanine hydroxylase (PAH) (EC 1.14.16.1) is an enzyme that catalyzes the hydroxylation of the aromatic side-chain of phenylalanine to generate tyrosine. PAH is one of three members of the biopterin-dependent aromatic amino acid hydroxylases, a class of monooxygenase that uses tetrahydrobiopterin (BH4, a pteridine cofactor) and a non-heme iron for catalysis. During the reaction, molecular oxygen is heterolytically cleaved with sequential incorporation of one oxygen atom into BH4 and phenylalanine substrate. In humans, mutations in its encoding gene, PAH, can lead to the metabolic disorder phenylketonuria.

In chemistry, hydroxylation can refer to:

<span class="mw-page-title-main">Occipital horn syndrome</span> Medical condition

Occipital horn syndrome (OHS), formerly considered a variant of Ehlers–Danlos syndrome, is an X-linked recessive mitochondrial and connective tissue disorder. It is caused by a deficiency in the transport of the essential mineral copper, associated with mutations in the ATP7A gene.

<span class="mw-page-title-main">Collagen, type I, alpha 1</span> Mammalian protein found in humans

Collagen, type I, alpha 1, also known as alpha-1 type I collagen, is a protein that in humans is encoded by the COL1A1 gene. COL1A1 encodes the major component of type I collagen, the fibrillar collagen found in most connective tissues, including cartilage.

<span class="mw-page-title-main">Collagen, type III, alpha 1</span>

Type III Collagen is a homotrimer, or a protein composed of three identical peptide chains (monomers), each called an alpha 1 chain of type III collagen. Formally, the monomers are called collagen type III, alpha-1 chain and in humans are encoded by the COL3A1 gene. Type III collagen is one of the fibrillar collagens whose proteins have a long, inflexible, triple-helical domain.

<span class="mw-page-title-main">Lysyl oxidase</span> Mammalian protein found in Homo sapiens

Lysyl oxidase (LOX), also known as protein-lysine 6-oxidase, is an enzyme that, in humans, is encoded by the LOX gene. It catalyzes the conversion of lysine residues into its aldehyde derivative allysine. Allysine form cross-links in extracellular matrix proteins. Inhibition of lysyl oxidase can cause osteolathyrism, but, at the same time, its upregulation by tumor cells may promote metastasis of the existing tumor, causing it to become malignant and cancerous.

Type I collagen is the most abundant collagen of the human body, consisting of around 90% of the body's total collagen in vertebrates. Due to this, it is also the most abundant protein type found in all vertebrates. Type I forms large, eosinophilic fibers known as collagen fibers, which make up most of the rope-like dense connective tissue in the body. Collagen I itself is created by the combination of both a proalpha1 and a proalpha2 chain created by the COL1alpha1 and COL1alpha2 genes respectively. The Col I gene itself takes up a triple-helical conformation due to its Glycine-X-Y structure, x and y being any type of amino acid. Collagen can also be found in two different isoforms, either as a homotrimer or a heterotrimer, both of which can be found during different periods of development. Heterotrimers, in particular, play an important role in wound healing, and are the dominant isoform found in the body.

Leprecan is a protein associated with osteogenesis imperfecta type VIII.

Type V collagen is a form of fibrillar collagen associated with classical Ehlers-Danlos syndrome. It is found within the dermal/epidermal junction, placental tissues, as well as in association with tissues containing type I collagen.

<span class="mw-page-title-main">Collagen, type V, alpha 1</span> Protein found in humans

Collagen alpha-1(V) chain is a protein that in humans is encoded by the COL5A1 gene.

<span class="mw-page-title-main">Procollagen-proline dioxygenase</span> Enzyme

Procollagen-proline dioxygenase, commonly known as prolyl hydroxylase, is a member of the class of enzymes known as alpha-ketoglutarate-dependent hydroxylases. These enzymes catalyze the incorporation of oxygen into organic substrates through a mechanism that requires alpha-Ketoglutaric acid, Fe2+, and ascorbate. This particular enzyme catalyzes the formation of (2S, 4R)-4-hydroxyproline, a compound that represents the most prevalent post-translational modification in the human proteome.

<span class="mw-page-title-main">CYP24A1</span>

Cytochrome P450 family 24 subfamily A member 1 (abbreviated CYP24A1) is a member of the cytochrome P450 superfamily of enzymes encoded by the CYP24A1 gene. It is a mitochondrial monooxygenase which catalyzes reactions including 24-hydroxylation of calcitriol (1,25-dihydroxyvitamin D3). It has also been identified as vitamin D3 24-hydroxylase.(EC 1.14.15.16)

<span class="mw-page-title-main">PLOD3</span> Protein-coding gene in the species Homo sapiens

Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 is an enzyme that in humans is encoded by the PLOD3 gene.

<span class="mw-page-title-main">B4GALT7</span> Protein-coding gene in the species Homo sapiens

Beta-1,4-galactosyltransferase 7 also known as galactosyltransferase I is an enzyme that in humans is encoded by the B4GALT7 gene. Galactosyltransferase I catalyzes the synthesis of the glycosaminoglycan-protein linkage in proteoglycans. Proteoglycans in turn are structural components of the extracellular matrix that is found between cells in connective tissues.

<span class="mw-page-title-main">Bruck syndrome</span> Medical condition

Bruck syndrome is characterized as the combination of arthrogryposis multiplex congenita and osteogenesis imperfecta. Both diseases are uncommon, but concurrence is extremely rare which makes Bruck syndrome very difficult to research. Bruck syndrome is thought to be an atypical variant of osteogenesis imperfecta most resembling type III, if not its own disease. Multiple gene mutations associated with osteogenesis imperfecta are not seen in Bruck syndrome. Many affected individuals are within the same family, and pedigree data supports that the disease is acquired through autosomal recessive inheritance. Bruck syndrome has features of congenital contractures, bone fragility, recurring bone fractures, flexion joint and limb deformities, pterygia, short body height, and progressive kyphoscoliosis. Individuals encounter restricted mobility and pulmonary function. A reduction in bone mineral content and larger hydroxyapatite crystals are also detectable Joint contractures are primarily bilateral and symmetrical, and most prone to ankles. Bruck syndrome has no effect on intelligence, vision, or hearing.

FKBP14 is a gene which codes for a structural protein named FKBP prolyl isomerase 14. This protein is believed to aid in the process of procollagen folding and is located in the endoplasmic reticulum that functions to process and transport proteins. Procollagens are collagen precursors located in the extracellular matrix that give tissues elasticity, strength, and support. This gene is involved in patterning the collagen structure. FKBP prolyl isomerase 14 may also be involved in altering other factors in the extracellular matrix. Mutations of this gene are associated with the kyphoscoliotic type of Ehlers-Danlos syndrome. This condition is characterized by a high range of joint movement, muscle atrophy, curved spine, and delicate cardiovascular vessels. These symptoms are brought about by a loss of the protein which results in a disruption of endoplasmic reticulum activities and extracellular matrix organization. FKBP14 mRNA levels are found higher in ovarian cancer tissues than healthy ovarian tissue and knocked down expression of FKBP14 by lentiviral shRNA leads to an impaired proliferative ability of ovarian cancer cells.

References

  1. Hausmann E (Apr 1967). "Cofactor requirements for the enzymatic hydroxylation of lysine in a polypeptide precursor of collagen". Biochimica et Biophysica Acta (BBA) - Protein Structure. 133 (3): 591–3. doi:10.1016/0005-2795(67)90566-1. PMID   6033801.
  2. Rhoads RE, Udenfriend S (Aug 1968). "Decarboxylation of alpha-ketoglutarate coupled to collagen proline hydroxylase". Proceedings of the National Academy of Sciences of the United States of America. 60 (4): 1473–8. Bibcode:1968PNAS...60.1473R. doi: 10.1073/pnas.60.4.1473 . PMC   224943 . PMID   5244754.
  3. Yeowell, H. N.; Steinmann, B.; Adam, M. P.; Everman, D. B.; Mirzaa, G. M.; Pagon, R. A.; Wallace, S. E.; Bean LJH; Gripp, K. W.; Amemiya, A. (1993). "PLOD1-Related Kyphoscoliotic Ehlers-Danlos Syndrome". University of Washington, Seattle. PMID   20301635.