Oxygenase

Last updated
Molecular structure of tryptophan 2,3-dioxygenase EC 1.13.11.11 Tryptophan 2,3-dioxygenase - PDB id 1yw0 - EBI.jpg
Molecular structure of tryptophan 2,3-dioxygenase

An oxygenase is any enzyme that oxidizes a substrate by transferring the oxygen from molecular oxygen O2 (as in air) to it. The oxygenases form a class of oxidoreductases; their EC number is EC 1.13 or EC 1.14.

Contents

Structure

Most oxygenases contain either a metal, usually iron, or an organic cofactor, usually flavin. These cofactors interact with O2, leading to its transfer to substrate. [1]

Oxygenases constitute a major intracellular source of iron and carbon monoxide [2]

Mechanism

Two types of oxygenases are recognized:

Among the most common monooxygenases are the cytochrome P450 oxidases, responsible for breaking down numerous chemicals in the body.

History

Oxygenases were discovered in 1955 simultaneously by two groups, Osamu Hayaishi from Japan [4] [5] [6] and Howard S. Mason from the US. [7] [8] Hayaishi was awarded the 1986 Wolf Prize in Medicine "for the discovery of the oxygenase enzymes and elucidation of their structure and biological importance." [9]

Related Research Articles

<span class="mw-page-title-main">Catechol 1,2-dioxygenase</span> Enzyme

Catechol 1,2- dioxygenase is an enzyme that catalyzes the oxidative ring cleavage of catechol to form cis,cis-muconic acid:

In enzymology, an isoflavone 2'-hydroxylase (EC 1.14.14.90, Formerly EC 1.14.13.89) is an enzyme that catalyzes the chemical reaction

In enzymology, a (S)-limonene 6-monooxygenase (EC 1.14.13.48) is an enzyme that catalyzes the chemical reaction

In enzymology, a (S)-limonene 7-monooxygenase (EC 1.14.13.49) is an enzyme that catalyzes the chemical reaction

In enzymology, a steroid 11beta-monooxygenase (EC 1.14.15.4) is an enzyme that catalyzes the chemical reaction

In enzymology, a thymine dioxygenase (EC 1.14.11.6) is an enzyme that catalyzes the chemical reaction

In enzymology, a trans-cinnamate 4-monooxygenase (EC 1.14.14.91) is an enzyme that catalyzes the chemical reaction

In enzymology, an unspecific monooxygenase (EC 1.14.14.1) is an enzyme that catalyzes the chemical reaction

Arginine 2-monooxygenase (EC 1.13.12.1) is an enzyme that catalyzes the chemical reaction

Ascorbate 2,3-dioxygenase (EC 1.13.11.13) is an enzyme that catalyzes the chemical reaction

Chloridazon-catechol dioxygenase (EC 1.13.11.36) is an enzyme that catalyzes the chemical reaction

In enzymology, a Cypridina-luciferin 2-monooxygenase (EC 1.13.12.6) is an enzyme that catalyzes the chemical reaction

In enzymology, a cysteamine dioxygenase (EC 1.13.11.19) is an enzyme that catalyzes the chemical reaction

In enzymology, an indole 2,3-dioxygenase (EC 1.13.11.17) is an enzyme that catalyzes the chemical reaction

In enzymology, a lactate 2-monooxygenase (EC 1.13.12.4) is an enzyme that catalyzes the chemical reaction

In enzymology, a lysine 2-monooxygenase (EC 1.13.12.2) is an enzyme that catalyzes the chemical reaction

In enzymology, a phenylalanine 2-monooxygenase (EC 1.13.12.9) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Protocatechuate 3,4-dioxygenase</span>

In enzymology, a protocatechuate 3,4-dioxygenase (EC 1.13.11.3) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Quercetin 2,3-dioxygenase</span>

In enzymology, a quercetin 2,3-dioxygenase (EC 1.13.11.24) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">HMOX2</span> Protein-coding gene in the species Homo sapiens

Heme oxygenase 2 is an enzyme that in humans is encoded by the HMOX2 gene.

References

  1. Fetzner, Susanne; Steiner, Roberto A. (2010). "Cofactor-independent oxidases and oxygenases". Applied Microbiology and Biotechnology. 86 (3): 791–804. doi:10.1007/s00253-010-2455-0. PMID   20157809. S2CID   25377247.
  2. SW, Ryter; J, Alam (April 2006). "Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications". Physiol Rev. 86 (2). Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, The University of Pittsburgh School of Medicine: 583–650. doi:10.1152/physrev.00011.2005. PMID   16601269.
  3. Bugg TDH (2003). "Dioxygenase enzymes: catalytic mechanisms and chemical models". Tetrahedron. 59 (36): 7075–7101. doi:10.1016/S0040-4020(03)00944-X.
  4. Hayaishi et al. (1955) Mechanism of the pyrocatechase reaction, J. Am. Chem. Soc. 77 (1955) 5450-5451
  5. Sligar SG, Makris TM, Denisov IG (2005). "Thirty years of microbial P450 monooxygenase research: peroxo-heme intermediates--the central bus station in heme oxygenase catalysis". Biochem. Biophys. Res. Commun. 338 (1): 346–54. doi:10.1016/j.bbrc.2005.08.094. PMID   16139790.
  6. Hayaishi O (2005). "An odyssey with oxygen". Biochem. Biophys. Res. Commun. 338 (1): 2–6. doi:10.1016/j.bbrc.2005.09.019. PMID   16185652.
  7. Mason HS, Fowlks WK, Peterson E (1955). "Oxygen transfer and electron transport by the phenolase complex". J. Am. Chem. Soc. 77 (10): 2914–2915. doi:10.1021/ja01615a088.
  8. Waterman MR (2005). "Professor Howard Mason and oxygen activation". Biochem. Biophys. Res. Commun. 338 (1): 7–11. doi:10.1016/j.bbrc.2005.08.120. PMID   16153596.
  9. "The Medicine Prize Committee unanimously decided that the Wolf Prize in Medicine for 1986 be awarded to Osamu Hayaishi". Wolf Foundation. Retrieved May 12, 2014.[ dead link ]