Collagen alpha-1(X) chain is a protein that in humans is a member of the collagen family encoded by the COL10A1gene.[5][6]
This gene encodes the alpha chain of type X collagen, a short chain collagen expressed by hypertrophic chondrocytes during endochondral ossification. Unlike type VIII collagen, the other short chain collagen, type X collagen is a homotrimer. Type X collagen has a short triple helical collagen domain flanked by the N-terminal NC2 and the C-terminal NC1 domains. The C-terminal NC1 domain has complement C1q-like structure. Collagen X forms hexamer complexes through the association of NC1 regions.[7] Mutations in this gene are associated with Schmid type metaphyseal chondrodysplasia (SMCD) and Japanese type spondylometaphyseal dysplasia (SMD).[6]
Recent studies into the early detection of colon cancer have identified COL10A1 protein levels in serum as a potential diagnostic biomarker candidate to detect both adenoma lesions and tumor.[9]
Collagen alpha-1(X) undergoes degradation in the active growth plate releasing an intact NC1 region with a small amount of collagenous region attached. This degradation byproduct has been deemed CXM and has potential to be a useful biomarker to assess real time growth velocity in children and fracture healing in adults.[10]
↑Leitinger B, Kwan AP (August 2006). "The discoidin domain receptor DDR2 is a receptor for type X collagen". Matrix Biology. 25 (6): 355–364. doi:10.1016/j.matbio.2006.05.006. PMID16806867.
Reichenberger E, Aigner T, von der Mark K, Stöss H, Bertling W (December 1991). "In situ hybridization studies on the expression of type X collagen in fetal human cartilage". Developmental Biology. 148 (2): 562–572. doi:10.1016/0012-1606(91)90274-7. PMID1743401.
Bonaventure J, Chaminade F, Maroteaux P (July 1995). "Mutations in three subdomains of the carboxy-terminal region of collagen type X account for most of the Schmid metaphyseal dysplasias". Human Genetics. 96 (1): 58–64. doi:10.1007/BF00214187. PMID7607655. S2CID20888881.
McIntosh I, Abbott MH, Francomano CA (1995). "Concentration of mutations causing Schmid metaphyseal chondrodysplasia in the C-terminal noncollagenous domain of type X collagen". Human Mutation. 5 (2): 121–125. doi:10.1002/humu.1380050204. PMID7749409. S2CID26291298.
McIntosh I, Abbott MH, Warman ML, Olsen BR, Francomano CA (February 1994). "Additional mutations of type X collagen confirm COL10A1 as the Schmid metaphyseal chondrodysplasia locus". Human Molecular Genetics. 3 (2): 303–307. doi:10.1093/hmg/3.2.303. PMID8004099.
Dharmavaram RM, Elberson MA, Peng M, Kirson LA, Kelley TE, Jimenez SA (March 1994). "Identification of a mutation in type X collagen in a family with Schmid metaphyseal chondrodysplasia". Human Molecular Genetics. 3 (3): 507–509. doi:10.1093/hmg/3.3.507. PMID8012364.
Warman ML, Abbott M, Apte SS, Hefferon T, McIntosh I, Cohn DH, etal. (September 1993). "A type X collagen mutation causes Schmid metaphyseal chondrodysplasia". Nature Genetics. 5 (1): 79–82. doi:10.1038/ng0993-79. PMID8220429. S2CID196834.
Pokharel RK, Alimsardjono H, Uno K, Fujii S, Shiba R, Matsuo M (December 1995). "A novel mutation substituting tryptophan with arginine in the carboxyl-terminal, non-collagenous domain of collagen X in a case of Schmid metaphyseal chondrodysplasia". Biochemical and Biophysical Research Communications. 217 (3): 1157–1162. doi:10.1006/bbrc.1995.2890. hdl:20.500.14094/D1001967. PMID8554571.
Beier F, Eerola I, Vuorio E, Luvalle P, Reichenberger E, Bertling W, etal. (December 1996). "Variability in the upstream promoter and intron sequences of the human, mouse and chick type X collagen genes". Matrix Biology. 15 (6): 415–422. doi:10.1016/S0945-053X(96)90160-2. PMID9049979.
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.