FACIT collagen

Last updated

FACIT collagen (Fibril Associated Collagens with Interrupted Triple helices [1] ) is a type of collagen and also a proteoglycan [2] that have two or more triple-helical domains that connect to collagen fibrils and share protein domains with non-collagen matrix molecules. [3] FACIT collagens derive their name from their association and interaction with fibrillar collagens. Unlike fibrillar collagens, which form long fibers.

Contents

FACIT collagens have interruptions in their triple helical structure. They are involved in assembling fibrillar collagens and other ECM components. Interruptions in the triple helical structure of FACIT collagens occur due to the presence of non-triple helical domains within the collagen molecule. These collagens are typically found alongside fibrillar collagens in various tissues and organs. Fibril-associated collagens with interrupted triple helices (FACIT collagens) are a subset of collagens that contribute to the organization and stabilization of the extracellular matrix (ECM). [4] These collagens are typically found alongside fibrillar collagens in various tissues and organs. These domains vary in length and composition and provide flexibility and additional binding sites for other components of the extracellular matrix. There are eight known types of FACIT collagens: collagens IX, XII, XIV, XVI, XIX, XXI, and XXII. [3]

The general FACIT collagen structure contains short triple helical COL domains (COL1, COL2, COL3) interrupted by NC domains with an N-terminal NC domain facing toward the interfibrillar space. [5] FACIT collagen is found in various tissue areas to modulate the surface properties of collagen fibrils and generate tissue-specific three-dimensional patterns in the extracellular matrix. [3] For example, collagen XIV connects the fibrillar networks of the cartilage and skin, [3] and XII is found in connective tissues, particularly at the tendons, ligaments, and periodontium. [6] These collagen types can be directly or indirectly associated with fibrils at different affinities to modulate the frictional properties of fibril surfaces. In addition, collagen XIV association with a propeptide suggests FACIT function can extend to providing binding sites for fibril-modifying extracellular enzymes. [3]

Other collagen types such as Collagen XX, which are smaller in size are mostly expressed in the connective tissue such as cartilage, tendon, and cornea while Collagen XIX is found in the skin, muscle cells, and the hippocampus. [3] There are also collagens that are expressed in the basement membrane zones, which are extracellular matrices composed of macromolecule networks, [5] and collagen XXII is one example located in the myotendinous junctions in the skeletal and heart muscles.

COL22A1 is also included in this class. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Collagen</span> Most abundant structural protein in animals

Collagen is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whole-body protein content. Collagen consists of amino acids bound together to form a triple helix of elongated fibril known as a collagen helix. It is mostly found in connective tissue such as cartilage, bones, tendons, ligaments, and skin. Collagen makes up 30% of the protein found in the human body. Vitamin C is vital for collagen synthesis. Vitamin E improves the production of collagen.

<span class="mw-page-title-main">Tendon</span> Type of tissue that connects muscle to bone

A tendon or sinew is a tough band of dense fibrous connective tissue that connects muscle to bone. It sends the mechanical forces of muscle contraction to the skeletal system, while withstanding tension.

<span class="mw-page-title-main">Cartilage</span> Resilient and smooth elastic tissue in animals

Cartilage is a resilient and smooth type of connective tissue. It is a semi-transparent and non-porous type of tissue. It is usually covered by a tough and fibrous membrane called perichondrium. In tetrapods, it covers and protects the ends of long bones at the joints as articular cartilage, and is a structural component of many body parts including the rib cage, the neck and the bronchial tubes, and the intervertebral discs. In other taxa, such as chondrichthyans, but also in cyclostomes, it may constitute a much greater proportion of the skeleton. It is not as hard and rigid as bone, but it is much stiffer and much less flexible than muscle. The matrix of cartilage is made up of glycosaminoglycans, proteoglycans, collagen fibers and, sometimes, elastin. It usually grows quicker than bone.

<span class="mw-page-title-main">Extracellular matrix</span> Network of proteins and molecules outside cells that provides structural support for cells

In biology, the extracellular matrix (ECM), is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and biochemical support to surrounding cells. Because multicellularity evolved independently in different multicellular lineages, the composition of ECM varies between multicellular structures; however, cell adhesion, cell-to-cell communication and differentiation are common functions of the ECM.

Matrix metalloproteinases (MMPs), also known as matrix metallopeptidases or matrixins, are metalloproteinases that are calcium-dependent zinc-containing endopeptidases; other family members are adamalysins, serralysins, and astacins. The MMPs belong to a larger family of proteases known as the metzincin superfamily.

<span class="mw-page-title-main">Fibril</span> Thin Fibre

Fibrils are structural biological materials found in nearly all living organisms. Not to be confused with fibers or filaments, fibrils tend to have diameters ranging from 10–100 nanometers. Fibrils are not usually found alone but rather are parts of greater hierarchical structures commonly found in biological systems. Due to the prevalence of fibrils in biological systems, their study is of great importance in the fields of microbiology, biomechanics, and materials science.

<span class="mw-page-title-main">Chondroblast</span> Mesenchymal progenitor cell that forms a chondrocyte

Chondroblasts, or perichondrial cells, is the name given to mesenchymal progenitor cells in situ which, from endochondral ossification, will form chondrocytes in the growing cartilage matrix. Another name for them is subchondral cortico-spongious progenitors. They have euchromatic nuclei and stain by basic dyes.

<span class="mw-page-title-main">Collagen, type I, alpha 1</span> Mammalian protein found in humans

Collagen, type I, alpha 1, also known as alpha-1 type I collagen, is a protein that in humans is encoded by the COL1A1 gene. COL1A1 encodes the major component of type I collagen, the fibrillar collagen found in most connective tissues, including cartilage.

Fibrillogenesis is the development of fine fibrils normally present in collagen fibers of connective tissue. It is derived from the New Latin fibrilla and Greek genesis.

<span class="mw-page-title-main">Collagen, type III, alpha 1</span>

Type III Collagen is a homotrimer, or a protein composed of three identical peptide chains (monomers), each called an alpha 1 chain of type III collagen. Formally, the monomers are called collagen type III, alpha-1 chain and in humans are encoded by the COL3A1 gene. Type III collagen is one of the fibrillar collagens whose proteins have a long, inflexible, triple-helical domain.

<span class="mw-page-title-main">Lumican</span>

Lumican, also known as LUM, is an extracellular matrix protein that, in humans, is encoded by the LUM gene on chromosome 12.

<span class="mw-page-title-main">Collagen, type XII, alpha 1</span> Protein found in humans

Collagen alpha-1(XII) chain is a protein that in humans is encoded by the COL12A1 gene.

<span class="mw-page-title-main">Collagen, type XV, alpha 1</span> Protein found in humans

Collagen alpha-1(XV) chain is a protein that in humans is encoded by the COL15A1 gene.

<span class="mw-page-title-main">Collagen, type XIX, alpha 1</span> Protein found in humans

Collagen alpha-1(XIX) chain is a protein that in humans is encoded by the COL19A1 gene.

<span class="mw-page-title-main">Collagen, type XVI, alpha 1</span> Protein found in humans

Collagen alpha-1(XVI) chain is a protein that in humans is encoded by the COL16A1 gene.

<span class="mw-page-title-main">Dermatopontin</span> Protein-coding gene in the species Homo sapiens

Dermatopontin also known as tyrosine-rich acidic matrix protein (TRAMP) is a protein that in humans is encoded by the DPT gene. Dermatopontin is a 22-kDa protein of the noncollagenous extracellular matrix (ECM) estimated to comprise 12 mg/kg of wet dermis weight. To date, homologues have been identified in five different mammals and 12 different invertebrates with multiple functions. In vertebrates, the primary function of dermatopontin is a structural component of the ECM, cell adhesion, modulation of TGF-β activity and cellular quiescence). It also has pathological involvement in heart attacks and decreased expression in leiomyoma and fibrosis. In invertebrate, dermatopontin homologue plays a role in hemagglutination, cell-cell aggregation, and expression during parasite infection.

Collagen receptors are membrane proteins that bind the extracellular matrix protein collagen, the most abundant protein in mammals. They control mainly cell proliferation, migration and adhesion, coagulation cascade activation and they affect ECM structure by regulation of MMP.

<span class="mw-page-title-main">Triple helix</span> Set of three congruent geometrical helices with the same axis

In the fields of geometry and biochemistry, a triple helix is a set of three congruent geometrical helices with the same axis, differing by a translation along the axis. This means that each of the helices keeps the same distance from the central axis. As with a single helix, a triple helix may be characterized by its pitch, diameter, and handedness. Examples of triple helices include triplex DNA, triplex RNA, the collagen helix, and collagen-like proteins.

<span class="mw-page-title-main">Collagen, type XXIII, alpha 1</span> Mammalian protein found in humans

Collagen α-1 (XXIII) chain is a protein encoded by COL23A1 gene, which is located on chromosome 5q35 in humans, and on chromosome 11B1+2 in mice. The location of this gene was discovered by genomic sequence analysis.

Alpha collagen is specifically designed to deliver specific ratios of α- chain peptides as building blocks. The targeted cells can process the α- chain peptides to form triple helix collagen, and replenish the collagen in the targeted site. Scientists believe that Alpha collagen can help to deliver specific ratios of peptides to benefit the targeted cells.

References

  1. GO term: FACIT collagen [ permanent dead link ]
  2. Lauder B (27 September 1995). "FACIT - Collagens which are proteoglycnas". Proteoglycans and Glycosaminoglycans. Archived from the original on 2006-10-10. Retrieved 2007-03-08.
  3. 1 2 3 4 5 6 Olsen BR (2014). "Matrix Molecules and Their Ligands". Principles of Tissue Engineering. Elsevier. pp. 189–208. doi:10.1016/b978-0-12-398358-9.00010-0. ISBN   978-0-12-398358-9.
  4. Vizzini, Aiti; Pergolizzi, Margherita; Vazzana, Mirella; Salerno, Giuseppina; Di Sano, Caterina; Macaluso, Pasquale; Arizza, Vincenzo; Parrinello, Daniela; Cammarata, Matteo; Parrinello, Nicolò (2008). "FACIT collagen (1α-chain) is expressed by hemocytes and epidermis during the inflammatory response of the ascidian Ciona intestinalis". Developmental & Comparative Immunology. 32 (6): 682–692. doi:10.1016/j.dci.2007.10.006.
  5. 1 2 Mecham R, ed. (February 17, 2011). The Extracellular Matrix: an Overview (2011 ed.). Springer. doi:10.1007/978-3-642-16555-9. ISBN   978-3642165542.
  6. Izu Y, Birk DE (2023). "Collagen XII mediated cellular and extracellular mechanisms in development, regeneration, and disease". Frontiers in Cell and Developmental Biology. 11: 1129000. doi: 10.3389/fcell.2023.1129000 . PMC   10017729 . PMID   36936682.
  7. Koch M, Schulze J, Hansen U, Ashwodt T, Keene DR, Brunken WJ, et al. (May 2004). "A novel marker of tissue junctions, collagen XXII". The Journal of Biological Chemistry. 279 (21): 22514–22521. doi: 10.1074/jbc.M400536200 . PMC   2925840 . PMID   15016833.