Threonine aldolase

Last updated
threonine aldolase
1lw4.jpg
L-Threonine aldolase homotetramer, Thermotoga maritima
Identifiers
EC no. 4.1.2.5
CAS no. 62213-23-4
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
threonine aldolase 1 pseudogene
Identifiers
SymbolTHA1P
NCBI gene 390816
HGNC 18004
RefSeq XM_372682
Other data
Locus Chr. 17 q25.3

The enzyme threonine aldolase (EC 4.1.2.5) is an enzyme that catalyzes the chemical reaction

Contents

L-threonine glycine + acetaldehyde

This enzyme belongs to the family of lyases, specifically the aldehyde-lyases, which cleave carbon-carbon bonds. The systematic name of this enzyme class is L-threonine acetaldehyde-lyase (glycine-forming). This enzyme is also called L-threonine acetaldehyde-lyase. This enzyme participates in glycine, serine and threonine metabolism. It employs one cofactor, pyridoxal phosphate.

Structural studies

As of late 2007, 5 structures have been solved for this class of enzymes, with PDB accession codes 1JG8, 1LW4, 1LW5, 1M6S, and 1SVV.

Presence in human and mouse

The enzyme is synthesized and functional in mice. [1]

Humans also have the remnants of the gene, coding this enzyme (GLY1), however it is damaged by past mutations and inactive. [1] Human gene contains two single nucleotide deletions causing frameshifts and premature stop codons. Also, the encoded protein would not be active anyway due mutations in other highly conserved regions. Human gene is no longer transcribed into RNA.

Related Research Articles

<span class="mw-page-title-main">Amino acid synthesis</span> The set of biochemical processes by which amino acids are produced

Amino acid synthesis is the set of biochemical processes by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to synthesize all amino acids. For example, humans can synthesize 11 of the 20 standard amino acids. These 11 are called the non-essential amino acids).

<span class="mw-page-title-main">Aldolase B</span> Mammalian protein found in Homo sapiens

Aldolase B also known as fructose-bisphosphate aldolase B or liver-type aldolase is one of three isoenzymes of the class I fructose 1,6-bisphosphate aldolase enzyme, and plays a key role in both glycolysis and gluconeogenesis. The generic fructose 1,6-bisphosphate aldolase enzyme catalyzes the reversible cleavage of fructose 1,6-bisphosphate (FBP) into glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP) as well as the reversible cleavage of fructose 1-phosphate (F1P) into glyceraldehyde and dihydroxyacetone phosphate. In mammals, aldolase B is preferentially expressed in the liver, while aldolase A is expressed in muscle and erythrocytes and aldolase C is expressed in the brain. Slight differences in isozyme structure result in different activities for the two substrate molecules: FBP and fructose 1-phosphate. Aldolase B exhibits no preference and thus catalyzes both reactions, while aldolases A and C prefer FBP.

<span class="mw-page-title-main">Serine hydroxymethyltransferase</span>

Serine hydroxymethyltransferase (SHMT) is a pyridoxal phosphate (PLP) (Vitamin B6) dependent enzyme (EC 2.1.2.1) which plays an important role in cellular one-carbon pathways by catalyzing the reversible, simultaneous conversions of L-serine to glycine and tetrahydrofolate (THF) to 5,10-Methylenetetrahydrofolate (5,10-CH2-THF). This reaction provides the largest part of the one-carbon units available to the cell.

<span class="mw-page-title-main">Cystathionine beta synthase</span> Mammalian protein found in humans

Cystathionine-β-synthase, also known as CBS, is an enzyme (EC 4.2.1.22) that in humans is encoded by the CBS gene. It catalyzes the first step of the transsulfuration pathway, from homocysteine to cystathionine:

<span class="mw-page-title-main">Serine dehydratase</span>

Serine dehydratase or L-serine ammonia lyase (SDH) is in the β-family of pyridoxal phosphate-dependent (PLP) enzymes. SDH is found widely in nature, but its structural and properties vary among species. SDH is found in yeast, bacteria, and the cytoplasm of mammalian hepatocytes. SDH catalyzes is the deamination of L-serine to yield pyruvate, with the release of ammonia.

<span class="mw-page-title-main">L-threonine 3-dehydrogenase</span> Class of enzymes

In enzymology, a L-threonine 3-dehydrogenase (EC 1.1.1.103) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Guanidinoacetate N-methyltransferase</span> Mammalian protein found in Homo sapiens

Guanidinoacetate N-methyltransferase is an enzyme that catalyzes the chemical reaction and is encoded by gene GAMT located on chromosome 19p13.3.

<span class="mw-page-title-main">Glycine dehydrogenase (decarboxylating)</span> Protein-coding gene in the species Homo sapiens

Glycine decarboxylase also known as glycine cleavage system P protein or glycine dehydrogenase is an enzyme that in humans is encoded by the GLDC gene.

<span class="mw-page-title-main">L-serine ammonia-lyase</span>

The enzyme L-serine ammonia-lyase (EC 4.3.1.17) catalyzes the chemical reaction

<span class="mw-page-title-main">Threonine ammonia-lyase</span>

Threonine ammonia-lyase (EC 4.3.1.19, systematic name L-threonine ammonia-lyase (2-oxobutanoate-forming), also commonly referred to as threonine deaminase or threonine dehydratase, is an enzyme responsible for catalyzing the conversion of L-threonine into α-ketobutyrate and ammonia:

The enzyme L-erythro-3-hydroxyaspartate aldolase catalyzes the chemical reaction

<span class="mw-page-title-main">4-hydroxy-2-oxovalerate aldolase</span> InterPro Family

The enzyme 4-hydroxy-2-oxovalerate aldolase catalyzes the chemical reaction

The enzyme deoxyribose-phosphate aldolase catalyzes the reversible chemical reaction

<span class="mw-page-title-main">Glycine—tRNA ligase</span> Protein-coding gene in the species Homo sapiens

Glycine—tRNA ligase also known as glycyl–tRNA synthetase is an enzyme that in humans is encoded by the GARS1 gene.

The enzyme ectoine synthase (EC ) catalyzes the chemical reaction

<span class="mw-page-title-main">Threonine synthase</span>

The enzyme threonine synthase (EC 4.2.3.1) catalyzes the chemical reaction

<span class="mw-page-title-main">GCSH</span> Protein-coding gene in the species Homo sapiens

Glycine cleavage system H protein, mitochondrial is a protein that in humans is encoded by the GCSH gene. Degradation of glycine is brought about by the glycine cleavage system (GCS), which is composed of 4 protein components: P protein, H protein, T protein, and L protein. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. The protein encoded by GCSH gene is the H protein, which transfers the methylamine group of glycine from the P protein to the T protein. Defects in this gene are a cause of nonketotic hyperglycinemia (NKH). Two transcript variants, one protein-coding and the other probably not protein-coding, have been found for this gene. Also, several transcribed and non-transcribed pseudogenes of this gene exist throughout the genome.

L-allo-threonine aldolase is an enzyme catalyzing the conversion between L-allothreonine on one side and glycine plus acetaldehyde on another side. Artificial disabling (knockout) of this enzyme in wild bacteria has no significant effect. However such disabling suppresses the growth of mutants that already lack other enzyme, serine hydroxymethyltransferase. Hence L-allo-threonine aldolase provides the alternative pathway for cellular glycine when serine hydroxymethyltransferase is inert. E.coli L-allo-threonine aldolase is a highly termostable enzyme, this can be used for purification.

D-threonine aldolase is an enzyme with systematic name D-threonine acetaldehyde-lyase (glycine-forming). This enzyme catalyses the following chemical reaction

Low-specificity L-threonine aldolase is an enzyme with systematic name L-threonine/L-allo-threonine acetaldehyde-lyase (glycine-forming). This enzyme catalyses the following chemical reaction

References

  1. 1 2 Alasdair J Edgar (2005) Mice have a transcribed L-threonine aldolase/GLY1 gene, but the human GLY1 gene is a non-processed pseudogene. BMC Genomics March 2005, 6:32. pdf