Uroporphyrinogen III decarboxylase

Last updated
UROD
Protein UROD PDB 1jph.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases UROD , PCT, UPD, uroporphyrinogen decarboxylase
External IDs OMIM: 613521 MGI: 98916 HomoloGene: 320 GeneCards: UROD
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000374

NM_009478

RefSeq (protein)

NP_000365

NP_033504

Location (UCSC) Chr 1: 45.01 – 45.02 Mb Chr 4: 116.85 – 116.85 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Uroporphyrinogen III decarboxylase (uroporphyrinogen decarboxylase, or UROD) is an enzyme (EC 4.1.1.37) that in humans is encoded by the UROD gene. [5]

Function

Uroporphyrinogen III decarboxylase is a homodimeric enzyme ( PDB: 1URO ) that catalyzes the fifth step in heme biosynthesis, which corresponds to the elimination of carboxyl groups from the four acetate side chains of uroporphyrinogen III to yield coproporphyrinogen III:

uroporphyrinogen III coproporphyrinogen III + 4 CO2

Clinical significance

Mutations and deficiency in this enzyme are known to cause familial porphyria cutanea tarda and hepatoerythropoietic porphyria. [5] At least 65 disease-causing mutations in this gene have been discovered. [6]

Mechanism

At low substrate concentrations, the reaction is believed to follow an ordered route, with the sequential removal of CO2 from the D, A, B, and C rings, whereas at higher substrate/enzyme levels a random route seems to be operative. The enzyme functions as a dimer in solution, and both the enzymes from human and tobacco have been crystallized and solved at good resolutions.

The reaction catalyzed by UroD Uroporphyrinogen-decarboxylase.svg
The reaction catalyzed by UroD

UroD is regarded as an unusual decarboxylase, since it performs decarboxylations without the intervention of any cofactors, unlike the vast majority of decarboxylases. Its mechanism has recently been proposed to proceed through substrate protonation by an arginine residue. [7] A 2008 report demonstrated that the uncatalyzed rate for UroD's reaction is 10−19 s−1, so at pH 10 the rate acceleration of UroD relative to the uncatalyzed rate, i.e. catalytic proficiency, is the largest for any enzyme known, 6 x 1024 M−1. [8]

Proposed reaction mechanism of uroporphyrinogen III decarboxylase UroD mechanism.svg
Proposed reaction mechanism of uroporphyrinogen III decarboxylase

Related Research Articles

<span class="mw-page-title-main">Variegate porphyria</span> Medical condition

Variegate porphyria, also known by several other names, is an autosomal dominant porphyria that can have acute symptoms along with symptoms that affect the skin. The disorder results from low levels of the enzyme responsible for the seventh step in heme production. Heme is a vital molecule for all of the body's organs. It is a component of hemoglobin, the molecule that carries oxygen in the blood.

<span class="mw-page-title-main">Porphyria cutanea tarda</span> Medical condition

Porphyria cutanea tarda is the most common subtype of porphyria. The disease is named because it is a porphyria that often presents with skin manifestations later in life. The disorder results from low levels of the enzyme responsible for the fifth step in heme production. Heme is a vital molecule for all of the body's organs. It is a component of hemoglobin, the molecule that carries oxygen in the blood.

<span class="mw-page-title-main">Gunther disease</span> Medical condition

Gunther disease is a congenital form of erythropoietic porphyria. The word porphyria originated from the Greek word porphura. Porphura actually means "purple pigment", which, in suggestion, the color that the body fluid changes when a person has Gunther's disease. It is a rare, autosomal recessive metabolic disorder affecting heme, caused by deficiency of the enzyme uroporphyrinogen cosynthetase. It is extremely rare, with a prevalence estimated at 1 in 1,000,000 or less. There have been times that prior to birth of a fetus, Gunther's disease has been shown to lead to anemia. In milder cases patients have not presented any symptoms until they have reached adulthood. In Gunther's disease, porphyrins are accumulated in the teeth and bones and an increased amount are seen in the plasma, bone marrow, feces, red blood cells, and urine.

<span class="mw-page-title-main">Protoporphyrinogen oxidase</span>

Protoporphyrinogen oxidase or protox is an enzyme that in humans is encoded by the PPOX gene.

<span class="mw-page-title-main">Porphobilinogen deaminase</span>

Porphobilinogen deaminase (hydroxymethylbilane synthase, or uroporphyrinogen I synthase) is an enzyme (EC 2.5.1.61) that in humans is encoded by the HMBS gene. Porphobilinogen deaminase is involved in the third step of the heme biosynthetic pathway. It catalyzes the head to tail condensation of four porphobilinogen molecules into the linear hydroxymethylbilane while releasing four ammonia molecules:

Galactosylceramidase, EC 3.2.1.46, is an enzyme that removes galactose from ceramide derivatives (galactosylceramides) by catalysing the hydrolysis of galactose ester bonds of galactosylceramide, galactosylsphingosine, lactosylceramide, and monogalactosyldiglyceride.

<span class="mw-page-title-main">Arylsulfatase A</span> Mammalian protein found in Homo sapiens

Arylsulfatase A is an enzyme that breaks down sulfatides, namely cerebroside 3-sulfate into cerebroside and sulfate. In humans, arylsulfatase A is encoded by the ARSA gene.

<span class="mw-page-title-main">Hepatoerythropoietic porphyria</span> Medical condition

Hepatoerythropoietic porphyria is a very rare form of hepatic porphyria caused by a disorder in both genes which code Uroporphyrinogen III decarboxylase (UROD).

<span class="mw-page-title-main">Galactosamine-6 sulfatase</span> Protein-coding gene in the species Homo sapiens

N-acetylgalactosamine-6-sulfatase is an enzyme that, in humans, is encoded by the GALNS gene.

<span class="mw-page-title-main">Glycine dehydrogenase (decarboxylating)</span> Protein-coding gene in the species Homo sapiens

Glycine decarboxylase also known as glycine cleavage system P protein or glycine dehydrogenase is an enzyme that in humans is encoded by the GLDC gene.

<span class="mw-page-title-main">PRKAG2</span> Protein-coding gene in the species Homo sapiens

5'-AMP-activated protein kinase subunit gamma-2 is an enzyme that in humans is encoded by the PRKAG2 gene.

<span class="mw-page-title-main">ANKH</span> Protein and coding gene in humans

Progressive ankylosis protein homolog is a protein that in humans is encoded by the ANKH gene.

<span class="mw-page-title-main">DBT (gene)</span> Mammalian protein found in Homo sapiens

Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial is an enzyme that in humans is encoded by the DBT gene.

<span class="mw-page-title-main">PRKCSH</span> Protein-coding gene in the species Homo sapiens

Glucosidase 2 subunit beta is an enzyme that in humans is encoded by the PRKCSH gene.

<span class="mw-page-title-main">FUT2</span> Protein and coding gene in humans

Galactoside 2-alpha-L-fucosyltransferase 2 is an enzyme that in humans is encoded by the FUT2 gene. It affects the secretor status of ABO antigens.

<span class="mw-page-title-main">ME2 (gene)</span> Protein-coding gene in the species Homo sapiens

NAD-dependent malic enzyme, mitochondrial is a protein that in humans is encoded by the ME2 gene. This gene encodes a mitochondrial NAD-dependent malic enzyme, a homotetrameric protein, that catalyzes the oxidative decarboxylation of malate to pyruvate. It had previously been weakly linked to a syndrome known as Friedreich ataxia that has since been shown to be the result of mutation in a completely different gene.

<span class="mw-page-title-main">PHKG2</span> Protein-coding gene in the species Homo sapiens

Phosphorylase b kinase gamma catalytic chain, testis/liver isoform is an enzyme that in humans is encoded by the PHKG2 gene.

<span class="mw-page-title-main">TRMU</span> Protein-coding gene in the species Homo sapiens

Mitochondrial tRNA-specific 2-thiouridylase 1 is an enzyme that in humans is encoded by the TRMU gene.

<span class="mw-page-title-main">HGSNAT</span> Protein-coding gene in the species Homo sapiens

Heparan-α-glucosaminide N-acetyltransferase is an enzyme that in humans is encoded by the HGSNAT gene.

<span class="mw-page-title-main">Arylsulfatase L</span> Protein-coding gene in the species Homo sapiens

Arylsulfatase L is an enzyme that, in humans, is encoded by the ARSL gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000126088 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000028684 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: UROD uroporphyrinogen decarboxylase".
  6. Šimčíková D, Heneberg P (December 2019). "Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases". Scientific Reports. 9 (1): 18577. Bibcode:2019NatSR...918577S. doi:10.1038/s41598-019-54976-4. PMC   6901466 . PMID   31819097.
  7. Silva PJ, Ramos MJ (2005). "Density-functional study of mechanisms for the cofactor-free decarboxylation performed by uroporphyrinogen III decarboxylase". J Phys Chem B. 109 (38): 18195–200. doi:10.1021/jp051792s. PMID   16853337.
  8. Lewis CA, Wolfenden R (November 2008). "Uroporphyrinogen decarboxylation as a benchmark for the catalytic proficiency of enzymes". Proc. Natl. Acad. Sci. U.S.A. 105 (45): 17328–33. Bibcode:2008PNAS..10517328L. doi: 10.1073/pnas.0809838105 . PMC   2582308 . PMID   18988736.

Further reading

Heme synthesis--note that some reactions occur in the cytoplasm and some in the mitochondrion (yellow) Heme synthesis.png
Heme synthesis—note that some reactions occur in the cytoplasm and some in the mitochondrion (yellow)