XBP1

Last updated
XBP1
Identifiers
Aliases XBP1 , TREB5, XBP-1, XBP2, TREB-5, X-box binding protein 1
External IDs MGI: 98970 HomoloGene: 3722 GeneCards: XBP1
Gene location (Human)
Ideogram human chromosome 22.svg
Chr. Chromosome 22 (human) [1]
Human chromosome 22 ideogram.svg
HSR 1996 II 3.5e.svg
Red rectangle 2x18.png
Band 22q12.1|22q12Start28,794,555 bp [1]
End28,800,597 bp [1]
RNA expression pattern
PBB GE XBP1 200670 at fs.png
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_005080
NM_001079539

NM_001271730
NM_013842

RefSeq (protein)

NP_001073007
NP_005071

NP_001258659
NP_038870

Location (UCSC) Chr 22: 28.79 – 28.8 Mb Chr 11: 5.52 – 5.53 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

X-box binding protein 1, also known as XBP1, is a protein which in humans is encoded by the XBP1 gene. [5] [6] The XBP1 gene is located on chromosome 22 while a closely related pseudogene has been identified and localized to chromosome 5. [7] The XBP1 protein is a transcription factor that regulates the expression of genes important to the proper functioning of the immune system and in the cellular stress response. [8]

Protein Biological molecule consisting of chains of amino acid residues

Proteins are large biomolecules, or macromolecules, consisting of one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific three-dimensional structure that determines its activity.

Gene Basic physical and functional unit of heredity

In biology, a gene is a sequence of nucleotides in DNA or RNA that codes for a molecule that has a function. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function. The transmission of genes to an organism's offspring is the basis of the inheritance of phenotypic trait. These genes make up different DNA sequences called genotypes. Genotypes along with environmental and developmental factors determine what the phenotypes will be. Most biological traits are under the influence of polygenes as well as gene–environment interactions. Some genetic traits are instantly visible, such as eye color or number of limbs, and some are not, such as blood type, risk for specific diseases, or the thousands of basic biochemical processes that constitute life.

Chromosome 22 human chromosome

Chromosome 22 is one of the 23 pairs of chromosomes in human cells. Humans normally have two copies of chromosome 22 in each cell. Chromosome 22 is the second smallest human chromosome, spanning about 49 million DNA base pairs and representing between 1.5 and 2% of the total DNA in cells.

Contents

Discovery

The X-box binding protein 1 (XBP1) is a transcription factor containing a bZIP domain. It was first identified by its ability to bind to the Xbox, a conserved transcriptional element in the promoter of the human leukocyte antigen (HLA) DR alpha. [6]

Transcription factor Protein that controls the rate of DNA transcription

In molecular biology, a transcription factor (TF) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The function of TFs is to regulate—turn on and off—genes in order to make sure that they are expressed in the right cell at the right time and in the right amount throughout the life of the cell and the organism. Groups of TFs function in a coordinated fashion to direct cell division, cell growth, and cell death throughout life; cell migration and organization during embryonic development; and intermittently in response to signals from outside the cell, such as a hormone. There are up to 2600 TFs in the human genome.

bZIP domain

The Basic Leucine Zipper Domain is found in many DNA binding eukaryotic proteins. One part of the domain contains a region that mediates sequence specific DNA binding properties and the leucine zipper that is required to hold together (dimerize) two DNA binding regions. The DNA binding region comprises a number of basic amino acids such as arginine and lysine. Proteins containing this domain are transcription factors.

Human leukocyte antigen

The human leukocyte antigen (HLA) system or complex is a gene complex encoding the major histocompatibility complex (MHC) proteins in humans. These cell-surface proteins are responsible for the regulation of the immune system in humans. The HLA gene complex resides on a 3 Mbp stretch within chromosome 6p21. HLA genes are highly polymorphic, which means that they have many different alleles, allowing them to fine-tune the adaptive immune system. The proteins encoded by certain genes are also known as antigens, as a result of their historic discovery as factors in organ transplants. Different classes have different functions:

Function

MHC class II gene regulation

The expression of this protein is required for the transcription of a subset of class II major histocompatibility genes. [9] Furthermore, XBP1 heterodimerizes with other bZIP transcription factors such as c-fos. [9]

MHC class II Protein of the immune system

MHC class II molecules are a class of major histocompatibility complex (MHC) molecules normally found only on professional antigen-presenting cells such as dendritic cells, mononuclear phagocytes, some endothelial cells, thymic epithelial cells, and B cells. These cells are important in initiating immune responses.

XBP1 expression is controlled by the cytokine IL-4 and the antibody IGHM. [10] XBP1 in turn controls the expression of IL-6 which promotes plasma cell growth and of immunoglobulins in B lymphocytes. [10]

Cytokine broad and loose category of small proteins (~5–20 kDa) that are important in cell signaling

Cytokines are a broad and loose category of small proteins that are important in cell signaling. Cytokines are peptides, and cannot cross the lipid bilayer of cells to enter the cytoplasm. Cytokines have been shown to be involved in autocrine signaling, paracrine signaling and endocrine signaling as immunomodulating agents. Their definite distinction from hormones is still part of ongoing research. Cytokines include chemokines, interferons, interleukins, lymphokines, and tumour necrosis factors, but generally not hormones or growth factors. Cytokines are produced by a broad range of cells, including immune cells like macrophages, B lymphocytes, T lymphocytes and mast cells, as well as endothelial cells, fibroblasts, and various stromal cells; a given cytokine may be produced by more than one type of cell.

Interleukin 4 protein-coding gene in the species Homo sapiens

The interleukin 4 is a cytokine that induces differentiation of naive helper T cells to Th2 cells. Upon activation by IL-4, Th2 cells subsequently produce additional IL-4 in a positive feedback loop. The cell that initially produces IL-4, thus inducing Th2 differentiation, has not been identified, but recent studies suggest that basophils may be the effector cell. It is closely related and has functions similar to interleukin 13.

IGHM gene in the species Homo sapiens

Ig mu chain C region is a protein that in humans is encoded by the IGHM gene.

Plasma cell differentiation

XBP1 is also essential for differentiation of plasma cells (a type of antibody secreting immune cell). [10] This differentiation requires not only the expression of XBP1 but the expression of the spliced isoform of XBP1s. XBP1 regulates plasma cell differentiation independent of its known functions in the endoplasmic reticulum stress response (see below). [11] Without normal expression of XBP1, two important plasma cell differentiation-related genes, IRF4 and Blimp1, are misregulated, and XBP1-lacking plasma cells fail to colonize their long-lived niches in the bone marrow and to sustain antibody secretion. [11]

Cellular differentiation The process in which relatively unspecialized cells, e.g. embryonic or regenerative cells, acquire specialized structural and/or functional features that characterize the cells, tissues, or organs of the mature organism or some other relatively stabl

Cellular differentiation is the process where a cell changes from one cell type to another. Usually, the cell changes to a more specialized type. Differentiation occurs numerous times during the development of a multicellular organism as it changes from a simple zygote to a complex system of tissues and cell types. Differentiation continues in adulthood as adult stem cells divide and create fully differentiated daughter cells during tissue repair and during normal cell turnover. Some differentiation occurs in response to antigen exposure. Differentiation dramatically changes a cell's size, shape, membrane potential, metabolic activity, and responsiveness to signals. These changes are largely due to highly controlled modifications in gene expression and are the study of epigenetics. With a few exceptions, cellular differentiation almost never involves a change in the DNA sequence itself. Thus, different cells can have very different physical characteristics despite having the same genome.

Plasma cell white blood cell that secretes large volumes of antibodies

Plasma cells, also called plasma B cells, plasmocytes, plasmacytes, or effector B cells, are white blood cells that originate in the bone marrow and secrete large quantities of proteins called antibodies in response to being presented specific substances called antigens. These antibodies are transported from the plasma cells by the blood plasma and the lymphatic system to the site of the target antigen, where they initiate its neutralization or destruction. B cells differentiate into plasma cells that produce antibody molecules closely modelled after the receptors of the precursor B cell..

Eosinophil differentiation

XBP1 is required for eosinophil differentiation. Eosinophils lacking XBP1 exhibit defects in granule proteins. [12]

Eosinophil variety of white blood cells

Eosinophils, sometimes called eosinophiles or, less commonly, acidophils, are a variety of white blood cells and one of the immune system components responsible for combating multicellular parasites and certain infections in vertebrates. Along with mast cells and basophils, they also control mechanisms associated with allergy and asthma. They are granulocytes that develop during hematopoiesis in the bone marrow before migrating into blood, after which they are terminally differentiated and do not multiply.

Angiogenesis

XBP1 acts to regulate endothelial cell proliferation through growth factor pathways, [13] leading to angiogenesis. Additionally, XBP1 protects endothelial cells from oxidative stress by interacting with HDAC3. [14]

Viral replication

This protein has also been identified as a cellular transcription factor that binds to an enhancer in the promoter of the Human T-lymphotropic virus 1. [15] The generation of XBP1s during plasma cell differentiation also seems to be the cue for Kaposi's sarcoma-associated herpesvirus and Epstein Barr virus reactivation from latency.

Endoplasmic reticulum stress response

XBP1 is part of the endoplasmic reticulum (ER) stress response, the unfolded protein response (UPR). [10] Conditions that exceed capacity of the ER provoke ER stress and trigger the unfolded protein response (UPR). As a result, GRP78 is released from IRE1 to support protein folding. [16] IRE1 oligomerises and activates its ribonuclease domain through auto (self) phosphorylation. Activated IRE1 catalyses the excision of a 26 nucleotide unconventional intron from ubiquitously expressed XBP1u mRNA, in a manner mechanistically similar to pre-tRNA splicing. Removal of this intron causes a frame shift in the XBP1 coding sequence resulting in the translation of a 376 amino acid, 40 kDa, XBP-1s isoform rather than the 261 amino acid, 33 kDa, XBP1u isoform. Moreover, the XBP1u/XBP1s ratio (XBP1-unspliced/XBP1-spliced ratio) correlates with the expression level of expressed proteins in order to adapt the folding capacity of the ER to the respective requirements. [17]

Clinical significance

Abnormalities in XBP1 lead to a heightened ER stress and subsequently causes a heightened susceptibility for inflammatory processes that may contribute to Alzheimer's disease. [18] In the colon, XBP1 anomalies have been linked to Crohn's disease. [19]

A single nucleotide polymorphism, C116G, in the promoter region of XBP1 has been examined for possible associations with personality traits. None were found. [20]

Interactions

XBP1 has been shown to interact with estrogen receptor alpha. [21]

See also

Related Research Articles

Endoplasmic reticulum Irregular network of membranes coterminous with the outer nuclear membrane in eukaryote cytoplasm that form a meshwork of tubular channels, often expanded into cisternae

The endoplasmic reticulum (ER) is a type of organelle found in eukaryotic cells that forms an interconnected network of flattened, membrane-enclosed sacs or tube-like structures known as cisternae. The membranes of the ER are continuous with the outer nuclear membrane. The endoplasmic reticulum occurs in most types of eukaryotic cells, but is absent from red blood cells and spermatozoa.

Sp1 transcription factor protein-coding gene in the species Homo sapiens

Transcription factor Sp1, also known as specificity protein 1* is a protein that in humans is encoded by the SP1 gene.

The unfolded protein response (UPR) is a cellular stress response related to the endoplasmic reticulum (ER) stress. It has been found to be conserved between all mammalian species, as well as yeast and worm organisms.

SREBP cleavage-activating protein protein-coding gene in the species Homo sapiens

Sterol regulatory element-binding protein cleavage-activating protein, also known as SREBP cleavage-activating protein or SCAP is a protein that in humans is encoded by the SCAP gene.

NFATC2 protein-coding gene in the species Homo sapiens

Nuclear factor of activated T-cells, cytoplasmic 2 is a protein that in humans is encoded by the NFATC2 gene.

ATF4 protein-coding gene in the species Homo sapiens

Activating transcription factor 4 , also known as ATF4, is a protein that in humans is encoded by the ATF4 gene.

ATF6 protein-coding gene in the species Homo sapiens

Activating transcription factor 6, also known as ATF6, is a protein that, in humans, is encoded by the ATF6 gene and is involved in the unfolded protein response.

Binding immunoglobulin protein protein-coding gene in the species Homo sapiens

Binding immunoglobulin protein (BiP) also known as (GRP-78) or heat shock 70 kDa protein 5 (HSPA5) or (Byun1) is a protein that in humans is encoded by the HSPA5 gene.

Activating transcription factor 2 protein-coding gene in the species Homo sapiens

Activating transcription factor 2, also known as ATF2, is a protein that, in humans, is encoded by the ATF2 gene.

DNA damage-inducible transcript 3 protein-coding gene in the species Homo sapiens

DNA damage-inducible transcript 3, also known as C/EBP homologous protein (CHOP), is a pro-apoptotic transcription factor that is encoded by the DDIT3 gene.

ERN1 protein-coding gene in the species Homo sapiens

The serine/threonine-protein kinase/endoribonuclease inositol-requiring enzyme 1 α (IRE1α) is an enzyme that in humans is encoded by the ERN1 gene.

NFYC protein-coding gene in the species Homo sapiens

Nuclear transcription factor Y subunit gamma is a protein that in humans is encoded by the NFYC gene.

ATP2A3 protein-coding gene in the species Homo sapiens

Sarcoplasmic/endoplasmic reticulum calcium ATPase 3 is an enzyme that in humans is encoded by the ATP2A3 gene.

CREB3 protein-coding gene in the species Homo sapiens

Cyclic AMP-responsive element-binding protein 3 is a protein that in humans is encoded by the CREB3 gene.

FOSL2 protein-coding gene in the species Homo sapiens

Fos-related antigen 2 (FRA2) is a protein that in humans is encoded by the FOSL2 gene.

CREBL1 protein-coding gene in the species Homo sapiens

CAMP responsive element binding protein-like 1, also known as CREBL1, is a protein which in humans is encoded by the CREBL1 gene.

INSIG2 protein-coding gene in the species Homo sapiens

Insulin induced gene 2, also known as INSIG2, is a protein which in humans is encoded by the INSIG2 gene.

HIVEP3 protein-coding gene in the species Homo sapiens

Transcription factor HIVEP3 is a protein that in humans is encoded by the HIVEP3 gene.

BZIP intron RNA motif

The bZIP intron RNA motif is an RNA structure guiding splicing of a non-canonical intron from bZIP-containing genes called HAC1 in yeast, XBP1 in Metazoa, Hxl1 or Cib1 in Basidiomycota and bZIP60 in plants. Splicing is performed independently of the spliceosome by Ire1, a kinase with endoribonuclease activity. Exons are joined by a tRNA ligase. Recognition of the intron splice sites is mediated by a base-paired secondary structure of the mRNA that forms at the exon/intron boundaries. Splicing of the bZIP intron is a key regulatory step in the unfolded protein response (UPR). The Ire-mediated unconventional splicing was first described for HAC1 in S. cerevisiae.

The integrated stress response is a condition that can be triggered within a cell.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000100219 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000020484 - Ensembl, May 2017
  3. "Human PubMed Reference:".
  4. "Mouse PubMed Reference:".
  5. "Entrez Gene: XBP1 X-box binding protein 1".
  6. 1 2 Liou HC, Boothby MR, Finn PW, Davidon R, Nabavi N, Zeleznik-Le NJ, Ting JP, Glimcher LH (March 1990). "A new member of the leucine zipper class of proteins that binds to the HLA DR alpha promoter". Science. 247 (4950): 1581–4. doi:10.1126/science.2321018. PMID   2321018.
  7. Liou HC, Eddy R, Shows T, Lisowska-Grospierre B, Griscelli C, Doyle C, Mannhalter J, Eibl M, Glimcher LH (1991). "An HLA-DR alpha promoter DNA-binding protein is expressed ubiquitously and maps to human chromosomes 22 and 5". Immunogenetics. 34 (5): 286–92. doi:10.1007/BF00211992. PMID   1718857.
  8. Yoshida H, Nadanaka S, Sato R, Mori K (2006). "XBP1 is critical to protect cells from endoplasmic reticulum stress: evidence from Site-2 protease-deficient Chinese hamster ovary cells". Cell Structure and Function. 31 (2): 117–25. doi:10.1247/csf.06016. PMID   17110785.
  9. 1 2 Ono SJ, Liou HC, Davidon R, Strominger JL, Glimcher LH (May 1991). "Human X-box-binding protein 1 is required for the transcription of a subset of human class II major histocompatibility genes and forms a heterodimer with c-fos". Proceedings of the National Academy of Sciences of the United States of America. 88 (10): 4309–12. doi:10.1073/pnas.88.10.4309. PMC   51648 . PMID   1903538.
  10. 1 2 3 4 Iwakoshi NN, Lee AH, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH (April 2003). "Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1". Nature Immunology. 4 (4): 321–9. doi:10.1038/ni907. PMID   12612580.
  11. 1 2 Hu CC, Dougan SK, McGehee AM, Love JC, Ploegh HL (June 2009). "XBP-1 regulates signal transduction, transcription factors and bone marrow colonization in B cells" (PDF). The EMBO Journal. 28 (11): 1624–36. doi:10.1038/emboj.2009.117. PMC   2684024 . PMID   19407814.
  12. Bettigole SE, Lis R, Adoro S, Lee AH, Spencer LA, Weller PF, Glimcher LH (August 2015). "The transcription factor XBP1 is selectively required for eosinophil differentiation". Nature Immunology. 16 (8): 829–37. doi:10.1038/ni.3225. PMC   4577297 . PMID   26147683.
  13. Zeng L, Xiao Q, Chen M, Margariti A, Martin D, Ivetic A, Xu H, Mason J, Wang W, Cockerill G, Mori K, Li JY, Chien S, Hu Y, Xu Q (April 2013). "Vascular endothelial cell growth-activated XBP1 splicing in endothelial cells is crucial for angiogenesis". Circulation. 127 (16): 1712–22. doi:10.1161/CIRCULATIONAHA.112.001337. PMID   23529610.
  14. Martin D, Li Y, Yang J, Wang G, Margariti A, Jiang Z, Yu H, Zampetaki A, Hu Y, Xu Q, Zeng L (October 2014). "Unspliced X-box-binding protein 1 (XBP1) protects endothelial cells from oxidative stress through interaction with histone deacetylase 3". The Journal of Biological Chemistry. 289 (44): 30625–34. doi:10.1074/jbc.M114.571984. PMC   4215241 . PMID   25190803.
  15. Ku, SC (2008). "XBP-1, a novel human T-lymphotropic virus type 1 (HTLV-1) tax binding protein, activates HTLV-1 basal and tax-activated transcription". J Virol. 82 (9): 4343–53. doi:10.1128/JVI.02054-07. PMC   2293026 . PMID   18287238.
  16. Kaufman RJ (May 1999). "Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls". Genes & Development. 13 (10): 1211–33. doi:10.1101/gad.13.10.1211. PMID   10346810.
  17. Kober L, Zehe C, Bode J (October 2012). "Development of a novel ER stress based selection system for the isolation of highly productive clones". Biotechnology and Bioengineering. 109 (10): 2599–611. doi:10.1002/bit.24527. PMID   22510960.
  18. Casas-Tinto S, Zhang Y, Sanchez-Garcia J, Gomez-Velazquez M, Rincon-Limas DE, Fernandez-Funez P (June 2011). "The ER stress factor XBP1s prevents amyloid-beta neurotoxicity". Human Molecular Genetics. 20 (11): 2144–60. doi:10.1093/hmg/ddr100. PMC   3090193 . PMID   21389082.
  19. Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H, Nieuwenhuis EE, Higgins DE, Schreiber S, Glimcher LH, Blumberg RS (September 2008). "XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease". Cell. 134 (5): 743–56. doi:10.1016/j.cell.2008.07.021. PMC   2586148 . PMID   18775308.
  20. Kusumi I, Masui T, Kakiuchi C, Suzuki K, Akimoto T, Hashimoto R, Kunugi H, Kato T, Koyama T (December 2005). "Relationship between XBP1 genotype and personality traits assessed by TCI and NEO-FFI". Neuroscience Letters. 391 (1–2): 7–10. doi:10.1016/j.neulet.2005.08.023. hdl:2115/8420. PMID   16154272.
  21. Ding L, Yan J, Zhu J, Zhong H, Lu Q, Wang Z, Huang C, Ye Q (September 2003). "Ligand-independent activation of estrogen receptor alpha by XBP-1". Nucleic Acids Research. 31 (18): 5266–74. doi:10.1093/nar/gkg731. PMC   203316 . PMID   12954762.