BCL11A

Last updated

BCL11A
Identifiers
Aliases BCL11A , BCL11A-L, BCL11A-S, BCL11A-XL, BCL11a-M, CTIP1, EVI9, HBFQTL5, ZNF856, B-cell CLL/lymphoma 11A, DILOS, B cell CLL/lymphoma 11A, BAF complex component, BAF chromatin remodeling complex subunit SMARCM1
External IDs OMIM: 606557; MGI: 106190; HomoloGene: 11284; GeneCards: BCL11A; OMA:BCL11A - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001159289
NM_001159290
NM_001242934
NM_016707

RefSeq (protein)

NP_060484
NP_075044
NP_612569
NP_001350793
NP_001352538

Contents

NP_001152761
NP_001152762
NP_001229863
NP_057916

Location (UCSC) Chr 2: 60.45 – 60.55 Mb Chr 11: 24.08 – 24.17 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

B-cell lymphoma/leukemia 11A is a protein that in humans is encoded by the BCL11A gene. [5] [6] [7]

Function

The BCL11A gene encodes for a regulatory C2H2 type zinc-finger protein, that can bind to the DNA. Five alternatively spliced transcript variants of this gene, which encode distinct isoforms, have been reported. [7] The protein associates with the SWI/SNF complex, that regulates gene expression via chromatin remodeling. [8]

BCL11A is highly expressed in several hematopoietic lineages, and plays a role in the switch from γ- to β-globin expression during the fetal to adult erythropoiesis transition. [9]

Furthermore, BCL11A is expressed in the brain, where it forms a protein complex with CASK to regulate axon outgrowth and branching. [10] In the neocortex, BCL11A binds to the TBR1 regulatory region and inhibits the expression of TBR1. [11]

Tetramerization of BCL11A shields it from proteasomal degradation and is critical for its γ-globin repression activity. [12]

Clinical significance

The corresponding Bcl11a mouse gene is a common site of retroviral integration in myeloid leukemia, and may function as a leukemia disease gene, in part, through its interaction with BCL6. During hematopoietic cell differentiation, this gene is down-regulated. It is possibly involved in lymphoma pathogenesis since translocations associated with B-cell malignancies also deregulates its expression. In addition, BCL11A has been found to play a role in the suppression of fetal hemoglobin production. Therapeutic strategies aimed at increasing fetal hemoglobin production in diseases such as beta thalassemia and sickle cell anemia by inhibiting BCL11A are currently being explored. [13] [14]

Furthermore, heterozygous de novo mutations in BCL11A have been identified in an intellectual disability disorder, accompanied with global developmental delay and autism spectrum disorder. [15] These mutations disrupt BCL11A homodimerization and transcriptional regulation.

BCL11A has also been identified as an important gene of interest in type-2 diabetes. Methylation of BCl11A has been hypothesized to contribute to type-2 diabetes risk, while BCL11a loss in a human islet model was demonstrated to result in an increase in insulin secretion. [16] [17]

Interactions

BCL11A has been shown to interact with a number of proteins. BCL11A was initially discovered as a COUP-TFI interacting protein. [18] In the nucleus, BCL11A forms paraspeckles that co-localize with NONO. [15] In neurons, BCL11A interacts with CASK to regulate target genes. [10] Furthermore, BCL11A interacts with the neuron-specific protein TBR1, which is also implicated in intellectual disability and autism spectrum disorder. [19]

Related Research Articles

<span class="mw-page-title-main">Bcl-2</span> Protein found in humans

Bcl-2, encoded in humans by the BCL2 gene, is the founding member of the Bcl-2 family of regulator proteins. BCL2 blocks programmed cell death (apoptosis) while other BCL2 family members can either inhibit or induce it. It was the first apoptosis regulator identified in any organism.

<span class="mw-page-title-main">Bruton's tyrosine kinase</span> Kinase that plays a role in B cell development

Bruton's tyrosine kinase, also known as tyrosine-protein kinase BTK, is a tyrosine kinase that is encoded by the BTK gene in humans. BTK plays a crucial role in B cell development.

<span class="mw-page-title-main">ETV6</span> Protein-coding gene in the species Homo sapiens

ETV6 protein is a transcription factor that in humans is encoded by the ETV6 gene. The ETV6 protein regulates the development and growth of diverse cell types, particularly those of hematological tissues. However, its gene, ETV6 frequently suffers various mutations that lead to an array of potentially lethal cancers, i.e., ETV6 is a clinically significant proto-oncogene in that it can fuse with other genes to drive the development and/or progression of certain cancers. However, ETV6 is also an anti-oncogene or tumor suppressor gene in that mutations in it that encode for a truncated and therefore inactive protein are also associated with certain types of cancers.

<span class="mw-page-title-main">Corepressor</span> Molecule that represses the expression of genes

In genetics and molecular biology, a corepressor is a molecule that represses the expression of genes. In prokaryotes, corepressors are small molecules whereas in eukaryotes, corepressors are proteins. A corepressor does not directly bind to DNA, but instead indirectly regulates gene expression by binding to repressors.

<span class="mw-page-title-main">FOXP1</span> Protein-coding gene in the species Homo sapiens

Forkhead box protein P1 is a protein that in humans is encoded by the FOXP1 gene. FOXP1 is necessary for the proper development of the brain, heart, and lung in mammals. It is a member of the large FOX family of transcription factors.

<span class="mw-page-title-main">RUNX1</span> Protein-coding gene in humans

Runt-related transcription factor 1 (RUNX1) also known as acute myeloid leukemia 1 protein (AML1) or core-binding factor subunit alpha-2 (CBFA2) and it is a protein that is encoded by the RUNX1 gene, in humans.

<span class="mw-page-title-main">BCL6</span> Transcription factor for converting Naive T cells to TFH

Bcl-6 is a protein that in humans is encoded by the BCL6 gene. BCL6 is a master transcription factor for regulation of T follicular helper cells proliferation. BCL6 has three evolutionary conserved structural domains. The interaction of these domains with corepressors allows for germinal center development and leads to B cell proliferation.

<span class="mw-page-title-main">Zinc finger and BTB domain-containing protein 16</span> Protein found in humans

Zinc finger and BTB domain-containing protein 16 is a protein that in humans is encoded by the ZBTB16 gene.

<span class="mw-page-title-main">HOXA9</span> Protein-coding gene in humans

Homeobox protein Hox-A9 is a protein that in humans is encoded by the HOXA9 gene.

<span class="mw-page-title-main">PIM1</span> Protein-coding gene in the species Homo sapiens

Proto-oncogene serine/threonine-protein kinase Pim-1 is an enzyme that in humans is encoded by the PIM1 gene.

<span class="mw-page-title-main">CUTL1</span> Protein-coding gene in the species Homo sapiens

Cux1 is a homeodomain protein that in humans is encoded by the CUX1 gene.

<span class="mw-page-title-main">IKZF1</span> Protein-coding gene in the species Homo sapiens

DNA-binding protein Ikaros also known as Ikaros family zinc finger protein 1 is a protein that in humans is encoded by the IKZF1 gene.

<span class="mw-page-title-main">IRF4</span> Protein-coding gene in the species Homo sapiens

Interferon regulatory factor 4 (IRF4) also known as MUM1 is a protein that in humans is encoded by the IRF4 gene. IRF4 functions as a key regulatory transcription factor in the development of human immune cells. The expression of IRF4 is essential for the differentiation of T lymphocytes and B lymphocytes as well as certain myeloid cells. Dysregulation of the IRF4 gene can result in IRF4 functioning either as an oncogene or a tumor-suppressor, depending on the context of the modification.

<span class="mw-page-title-main">STIL</span> Protein-coding gene in the species Homo sapiens

SCL-interrupting locus protein is a protein that in humans is encoded by the STIL gene. STIL is present in many different cell types and is essential for centriole biogenesis. This gene encodes a cytoplasmic protein implicated in regulation of the mitotic spindle checkpoint, a regulatory pathway that monitors chromosome segregation during cell division to ensure the proper distribution of chromosomes to daughter cells. The protein is phosphorylated in mitosis and in response to activation of the spindle checkpoint, and disappears when cells transition to G1 phase. It interacts with a mitotic regulator, and its expression is required to efficiently activate the spindle checkpoint.

<span class="mw-page-title-main">FIP1L1</span> Protein-coding gene in humans

Factor interacting with PAPOLA and CPSF1 is a protein that in humans is encoded by the FIP1L1 gene. A medically important aspect of the FIP1L1 gene is its fusion with other genes to form fusion genes which cause clonal hypereosinophilia and leukemic diseases in humans.

<span class="mw-page-title-main">BCL-6 corepressor</span> Protein-coding gene in humans

BCL-6 corepressor is a protein that in humans is encoded by the BCOR gene.

<span class="mw-page-title-main">ZMYND8</span> Protein-coding gene in the species Homo sapiens

Protein kinase C-binding protein 1 is an enzyme that in humans is encoded by the ZMYND8 gene.

<span class="mw-page-title-main">ZBTB7A</span> Protein-coding gene in the species Homo sapiens

Zinc finger and BTB domain-containing protein 7A is a protein that in humans is encoded by the ZBTB7A gene.

<span class="mw-page-title-main">BCL11B</span> Protein-coding gene in the species Homo sapiens

B-cell lymphoma/leukemia 11B is a protein that in humans is encoded by the BCL11B gene.

<span class="mw-page-title-main">BCL9</span> Protein-coding gene in the species Homo sapiens

B-cell CLL/lymphoma 9 protein is a protein that in humans is encoded by the BCL9 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000119866 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000000861 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Satterwhite E, Sonoki T, Willis TG, Harder L, Nowak R, Arriola EL, et al. (December 2001). "The BCL11 gene family: involvement of BCL11A in lymphoid malignancies". Blood. 98 (12): 3413–20. doi: 10.1182/blood.V98.12.3413 . PMID   11719382.
  6. Uda M, Galanello R, Sanna S, Lettre G, Sankaran VG, Chen W, et al. (February 2008). "Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia". Proceedings of the National Academy of Sciences of the United States of America. 105 (5): 1620–5. Bibcode:2008PNAS..105.1620U. doi: 10.1073/pnas.0711566105 . PMC   2234194 . PMID   18245381.
  7. 1 2 "Entrez Gene: BCL11A B-cell CLL/lymphoma 11A (zinc finger protein)".
  8. Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J, et al. (June 2013). "Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy". Nature Genetics. 45 (6): 592–601. doi:10.1038/ng.2628. PMC   3667980 . PMID   23644491.
  9. Smith EC, Luc S, Croney DM, Woodworth MB, Greig LC, Fujiwara Y, et al. (November 2016). "Bcl11a erythroid enhancer". Blood. 128 (19): 2338–2342. doi:10.1182/blood-2016-08-736249. PMC   5106112 . PMID   27707736.
  10. 1 2 Kuo TY, Hong CJ, Chien HL, Hsueh YP (August 2010). "X-linked mental retardation gene CASK interacts with Bcl11A/CTIP1 and regulates axon branching and outgrowth". Journal of Neuroscience Research (in German). 88 (11): 2364–73. doi:10.1002/jnr.22407. PMID   20623620. S2CID   19810502.
  11. Cánovas J, Berndt FA, Sepúlveda H, Aguilar R, Veloso FA, Montecino M, et al. (May 2015). "The Specification of Cortical Subcerebral Projection Neurons Depends on the Direct Repression of TBR1 by CTIP1/BCL11a". The Journal of Neuroscience. 35 (19): 7552–64. doi:10.1523/JNEUROSCI.0169-15.2015. PMC   6705430 . PMID   25972180.
  12. Zheng G, Yin M, Mehta S, Chu IT, Wang S, AlShaye A, et al. (2024-11-29). "A tetramer of BCL11A is required for stable protein production and fetal hemoglobin silencing". Science. 386 (6725): 1010–1018. doi:10.1126/science.adp3025.
  13. Zipkin M (December 2019). "CRISPR's "magnificent moment" in the clinic". Nature Biotechnology. doi:10.1038/d41587-019-00035-2. PMID   33277639. S2CID   213060203.
  14. "Sickle cell: 'The revolutionary gene-editing treatment that gave me new life'". BBC News. 2022-02-20. Retrieved 2023-03-27.
  15. 1 2 Dias C, Estruch SB, Graham SA, McRae J, Sawiak SJ, Hurst JA, et al. (August 2016). "BCL11A Haploinsufficiency Causes an Intellectual Disability Syndrome and Dysregulates Transcription". American Journal of Human Genetics. 99 (2): 253–74. doi:10.1016/j.ajhg.2016.05.030. PMC   4974071 . PMID   27453576.
  16. Peiris H, Park S, Louis S, Gu X, Lam JY, Asplund O, et al. (September 2018). "Discovering human diabetes-risk gene function with genetics and physiological assays". Nature Communications. 9 (1): 3855. Bibcode:2018NatCo...9.3855P. doi: 10.1038/s41467-018-06249-3 . PMC   6155000 . PMID   30242153.
  17. Tang L, Wang L, Ye H, Xu X, Hong Q, Wang H, et al. (August 2014). "BCL11A gene DNA methylation contributes to the risk of type 2 diabetes in males". Experimental and Therapeutic Medicine. 8 (2): 459–463. doi: 10.3892/etm.2014.1783 . PMC   4079426 . PMID   25009601.
  18. Avram D, Fields A, Senawong T, Topark-Ngarm A, Leid M (December 2002). "COUP-TF (chicken ovalbumin upstream promoter transcription factor)-interacting protein 1 (CTIP1) is a sequence-specific DNA binding protein". The Biochemical Journal. 368 (Pt 2): 555–63. doi:10.1042/bj20020496. PMC   1223006 . PMID   12196208.
  19. den Hoed J, Sollis E, Venselaar H, Estruch SB, Deriziotis P, Fisher SE (September 2018). "Functional characterization of TBR1 variants in neurodevelopmental disorder". Scientific Reports. 8 (1): 14279. Bibcode:2018NatSR...814279D. doi:10.1038/s41598-018-32053-6. PMC   6155134 . PMID   30250039.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.