The constitutive androstane receptor (CAR) also known as nuclear receptor subfamily 1, group I, member 3 is a protein that in humans is encoded by the NR1I3 gene. [5] CAR is a member of the nuclear receptor superfamily and along with pregnane X receptor (PXR) functions as a sensor of endobiotic and xenobiotic substances. In response, expression of proteins responsible for the metabolism and excretion of these substances is upregulated. [6] Hence, CAR and PXR play a major role in the detoxification of foreign substances such as drugs.
Androstenol and several isomers of androstanol, androstanes, are endogenous antagonists of the CAR, and despite acting as antagonists, were the basis for the naming of this receptor. [7] More recently, dehydroepiandrosterone (DHEA), also an androstane, has been found to be an endogenous agonist of the CAR. [8]
CAR is a member of the nuclear receptor superfamily, and is a key regulator of xenobiotic and endobiotic metabolism. Unlike most nuclear receptors, this transcriptional regulator is constitutively active in the absence of ligand and is regulated by both agonists and inverse agonists. Ligand binding results in translocation of CAR from the cytosol into the nucleus, where the protein can bind to specific DNA sites, called response elements. Binding occurs both as a monomer and together with the retinoid X receptor (RXR) resulting in activation or repression of target gene transcription. CAR-regulated genes are involved in drug metabolism and bilirubin clearance. Examples for CAR-regulated genes are members of the CYP2B, CYP2C, and CYP3A subfamilies, sulfotransferases, and glutathione-S-transferases. [9] Ligands binding to CAR include bilirubin, a variety of foreign compounds, steroid hormones, and prescription drugs. [10]
Phosphorylated CAR forms a multiprotein complex with the heat shock protein 90 (hsp90) and the cytoplasmic CAR retention protein (CCRP) which keep CAR in the cytosol thereby inactivating it. [11] CAR can be activated in two ways: by direct binding of a ligand (e.g. TCPOBOP) or indirect regulation by phenobarbital (PB), a common seizure medication, facilitating the dephosphorylation of CAR through protein phosphatase 2 (PP2A) (Fig. 1). [12]
Both lead to the release of CAR from the multiprotein complex and its translocation into the nucleus. Here, CAR forms a heterodimer with retinoid X receptor (RXR) and interacts with the phenobarbital-responsive enhancer module (PBREM), a distal enhancer activating transcription of CAR target genes. [13]
The consensus sequence of PBREM, containing direct repeat-4 motifs, was found to be conserved in mouse, rat and human 'Cyp2b' genes. [14] [15] [16]
1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) is thought to bind directly to mouse CAR, thus inducing its translocation into the nucleus. [17] TCPOBOP does not bind to human CAR and hence has no effect on it. Human CAR can be activated by CITCO (6-(4-chlorophenyl)imidazo(2,1-b)(1,3)thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime). [18]
Phenobarbital (PB), a widely used anticonvulsant, is used as a model ligand for indirect CAR activation. PB activates CAR, by inducing the dephosphorylation of CAR through PP2A. How PP2A is activated remains unclear, but several different mechanisms have been proposed. [19] [20] The recruitment of PP2A has been shown to be mediated by the multiprotein complex. As PB is involved in the activation of AMP-activated protein kinase, it has been suggested that AMPK activates PP2A. [21]
Alternatively, PP2A might be activated through another pathway including the epidermal growth factor receptor (EGFR) and the receptor for activated C kinase 1 (RACK1). In the absence of PB, the epidermal growth factor (EGF) binds to EGFR, thereby activating the steroid receptor coactivator-1 (Src1), which in turn phosphorylates RACK1. Upon PB-exposure, PB binds competitively to EGFR and thus leads to inactivation of Src1. This results in a dephosphorylation of RACK1, which can subsequently stimulate PP2A to activate CAR. [20]
HNF4 is a nuclear receptor protein mostly expressed in the liver, gut, kidney, and pancreatic beta cells that is critical for liver development. In humans, there are two isoforms of HNF4, HNF4α and HNF4γ,encoded by two separate genes HNF4A and HNF4G respectively.
The aryl hydrocarbon receptor is a protein that in humans is encoded by the AHR gene. The aryl hydrocarbon receptor is a transcription factor that regulates gene expression. It was originally thought to function primarily as a sensor of xenobiotic chemicals and also as the regulator of enzymes such as cytochrome P450s that metabolize these chemicals. The most notable of these xenobiotic chemicals are aromatic (aryl) hydrocarbons from which the receptor derives its name.
The bile acid receptor (BAR), also known as farnesoid X receptor (FXR) or NR1H4, is a nuclear receptor that is encoded by the NR1H4 gene in humans.
The liver X receptor (LXR) is a member of the nuclear receptor family of transcription factors and is closely related to nuclear receptors such as the PPARs, FXR and RXR. Liver X receptors (LXRs) are important regulators of cholesterol, fatty acid, and glucose homeostasis. LXRs were earlier classified as orphan nuclear receptors, however, upon discovery of endogenous oxysterols as ligands they were subsequently deorphanized.
In the field of molecular biology, the pregnane X receptor (PXR), also known as the steroid and xenobiotic sensing nuclear receptor (SXR) or nuclear receptor subfamily 1, group I, member 2 (NR1I2) is a protein that in humans is encoded by the NR1I2 gene.
The ERRs are orphan nuclear receptors, meaning the identity of their endogenous ligand has yet to be unambiguously determined. They are named because of sequence homology with estrogen receptors, but do not appear to bind estrogens or other tested steroid hormones.
The nuclear receptor 4A3 (NR4A3) also known as neuron-derived orphan receptor 1 (NOR1) is a protein that in humans is encoded by the NR4A3 gene. NR4A3 is a member of the nuclear receptor family of intracellular transcription factors.
The liver receptor homolog-1 (LRH-1) also known as totipotency pioneer factor NR5A2 is a protein that in humans is encoded by the NR5A2 gene. LRH-1 is a member of the nuclear receptor family of intracellular transcription factors.
The small heterodimer partner (SHP) also known as NR0B2 is a protein that in humans is encoded by the NR0B2 gene. SHP is a member of the nuclear receptor family of intracellular transcription factors. SHP is unusual for a nuclear receptor in that it lacks a DNA binding domain. Therefore, it is technically neither a transcription factor nor nuclear receptor but nevertheless it is still classified as such due to relatively high sequence homology with other nuclear receptor family members.
Peroxisome proliferator- activated receptor gamma, also known as the glitazone reverse insulin resistance receptor, or NR1C3 is a type II nuclear receptor functioning as a transcription factor that in humans is encoded by the PPARG gene.
Rev-Erb alpha (Rev-Erbɑ), also known as nuclear receptor subfamily 1 group D member 1 (NR1D1), is one of two Rev-Erb proteins in the nuclear receptor (NR) family of intracellular transcription factors. In humans, REV-ERBɑ is encoded by the NR1D1 gene, which is highly conserved across animal species.
Hepatocyte nuclear factor 4 alpha (HNF4A) also known as NR2A1 is a nuclear receptor that in humans is encoded by the HNF4A gene.
Estrogen-related receptor gamma (ERR-gamma), also known as NR3B3, is a nuclear receptor that in humans is encoded by the ESRRG gene. It behaves as a constitutive activator of transcription.
COUP-TFII, also known as NR2F2 is a protein that in humans is encoded by the NR2F2 gene. The COUP acronym stands for chicken ovalbumin upstream promoter.
Estrogen-related receptor alpha (ERRα), also known as NR3B1, is a nuclear receptor that in humans is encoded by the ESRRA gene. ERRα was originally cloned by DNA sequence homology to the estrogen receptor alpha, but subsequent ligand binding and reporter-gene transfection experiments demonstrated that estrogens did not regulate ERRα. Currently, ERRα is considered an orphan nuclear receptor.
The testicular receptor 2 (TR2) also known as NR2C1 is protein that in humans is encoded by the NR2C1 gene. TR2 is a member of the nuclear receptor family of transcription factors.
Liver X receptor beta (LXR-β) is a member of the nuclear receptor family of transcription factors. LXR-β is encoded by the NR1H2 gene.
Peroxisome proliferator-activated receptor gamma coactivator 1-beta is a protein that in humans is encoded by the PPARGC1B gene.
Glutamate receptor-interacting protein 1 is a protein that in humans is encoded by the GRIP1 gene.
A xenobiotic-sensing receptor is a receptor that binds xenobiotics. They include the following nuclear receptors:
This article incorporates text from the United States National Library of Medicine, which is in the public domain.