Constitutive androstane receptor

Last updated
NR1I3
Protein NR1I3 PDB 1xv9.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases NR1I3 , CAR, CAR1, MB67, nuclear receptor subfamily 1 group I member 3
External IDs OMIM: 603881 MGI: 1346307 HomoloGene: 3759 GeneCards: NR1I3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001243062
NM_001243063
NM_009803

RefSeq (protein)

NP_001229991
NP_001229992
NP_033933

Location (UCSC) Chr 1: 161.23 – 161.24 Mb Chr 1: 171.04 – 171.05 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

The constitutive androstane receptor (CAR) also known as nuclear receptor subfamily 1, group I, member 3 is a protein that in humans is encoded by the NR1I3 gene. [5] CAR is a member of the nuclear receptor superfamily and along with pregnane X receptor (PXR) functions as a sensor of endobiotic and xenobiotic substances. In response, expression of proteins responsible for the metabolism and excretion of these substances is upregulated. [6] Hence, CAR and PXR play a major role in the detoxification of foreign substances such as drugs.

Androstenol and several isomers of androstanol, androstanes, are endogenous antagonists of the CAR, and despite acting as antagonists, were the basis for the naming of this receptor. [7] More recently, dehydroepiandrosterone (DHEA), also an androstane, has been found to be an endogenous agonist of the CAR. [8]

Function

CAR is a member of the nuclear receptor superfamily, and is a key regulator of xenobiotic and endobiotic metabolism. Unlike most nuclear receptors, this transcriptional regulator is constitutively active in the absence of ligand and is regulated by both agonists and inverse agonists. Ligand binding results in translocation of CAR from the cytosol into the nucleus, where the protein can bind to specific DNA sites, called response elements. Binding occurs both as a monomer and together with the retinoid X receptor (RXR) resulting in activation or repression of target gene transcription. CAR-regulated genes are involved in drug metabolism and bilirubin clearance. Examples for CAR-regulated genes are members of the CYP2B, CYP2C, and CYP3A subfamilies, sulfotransferases, and glutathione-S-transferases. [9] Ligands binding to CAR include bilirubin, a variety of foreign compounds, steroid hormones, and prescription drugs. [10]

Activation mechanism

Phosphorylated CAR forms a multiprotein complex with the heat shock protein 90 (hsp90) and the cytoplasmic CAR retention protein (CCRP) which keep CAR in the cytosol thereby inactivating it. [11] CAR can be activated in two ways: by direct binding of a ligand (e.g. TCPOBOP) or indirect regulation by phenobarbital (PB), a common seizure medication, facilitating the dephosphorylation of CAR through protein phosphatase 2 (PP2A) (Fig. 1). [12]

Both lead to the release of CAR from the multiprotein complex and its translocation into the nucleus. Here, CAR forms a heterodimer with retinoid X receptor (RXR) and interacts with the phenobarbital-responsive enhancer module (PBREM), a distal enhancer activating transcription of CAR target genes. [13]

The consensus sequence of PBREM, containing direct repeat-4 motifs, was found to be conserved in mouse, rat and human 'Cyp2b' genes. [14] [15] [16]

Direct activation

1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) is thought to bind directly to mouse CAR, thus inducing its translocation into the nucleus. [17] TCPOBOP does not bind to human CAR and hence has no effect on it. Human CAR can be activated by CITCO (6-(4-chlorophenyl)imidazo(2,1-b)(1,3)thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime). [18]

Indirect activation

Figure 1 - Activation mechanisms of CAR: Inactivated CAR is retained in the cytosol. Upon binding of TCPOBOP, CAR gets dephosphorylated by PP2A and translocates into the nucleus. Here, it forms a complex with RXR and binds to the PB-responsive enhancer module. Another possibility to activate CAR is the indirect activation through PB. PB binds competitively to EGFR, thus inducing the dephosphorylation of RACK-1. RACK-1 then stimulates PP2A to dephosphorylate CAR, which is then translocated into the nucleus. Activation mechanisms of CAR.png
Figure 1 - Activation mechanisms of CAR: Inactivated CAR is retained in the cytosol. Upon binding of TCPOBOP, CAR gets dephosphorylated by PP2A and translocates into the nucleus. Here, it forms a complex with RXR and binds to the PB-responsive enhancer module. Another possibility to activate CAR is the indirect activation through PB. PB binds competitively to EGFR, thus inducing the dephosphorylation of RACK-1. RACK-1 then stimulates PP2A to dephosphorylate CAR, which is then translocated into the nucleus.

Phenobarbital (PB), a widely used anticonvulsant, is used as a model ligand for indirect CAR activation. PB activates CAR, by inducing the dephosphorylation of CAR through PP2A. How PP2A is activated remains unclear, but several different mechanisms have been proposed. [19] [20] The recruitment of PP2A has been shown to be mediated by the multiprotein complex. As PB is involved in the activation of AMP-activated protein kinase, it has been suggested that AMPK activates PP2A. [21]

Alternatively, PP2A might be activated through another pathway including the epidermal growth factor receptor (EGFR) and the receptor for activated C kinase 1 (RACK1). In the absence of PB, the epidermal growth factor (EGF) binds to EGFR, thereby activating the steroid receptor coactivator-1 (Src1), which in turn phosphorylates RACK1. Upon PB-exposure, PB binds competitively to EGFR and thus leads to inactivation of Src1. This results in a dephosphorylation of RACK1, which can subsequently stimulate PP2A to activate CAR. [20]

Related Research Articles

HNF4 is a nuclear receptor protein mostly expressed in the liver, gut, kidney, and pancreatic beta cells that is critical for liver development. In humans, there are two isoforms of HNF4, HNF4α and HNF4γ,encoded by two separate genes HNF4A and HNF4G respectively.

<span class="mw-page-title-main">Aryl hydrocarbon receptor</span> Vertebrate transcription factor

The aryl hydrocarbon receptor is a protein that in humans is encoded by the AHR gene. The aryl hydrocarbon receptor is a transcription factor that regulates gene expression. It was originally thought to function primarily as a sensor of xenobiotic chemicals and also as the regulator of enzymes such as cytochrome P450s that metabolize these chemicals. The most notable of these xenobiotic chemicals are aromatic (aryl) hydrocarbons from which the receptor derives its name.

<span class="mw-page-title-main">Farnesoid X receptor</span> Protein-coding gene in the species Homo sapiens

The bile acid receptor (BAR), also known as farnesoid X receptor (FXR) or NR1H4, is a nuclear receptor that is encoded by the NR1H4 gene in humans.

<span class="mw-page-title-main">Liver X receptor</span> Nuclear receptor

The liver X receptor (LXR) is a member of the nuclear receptor family of transcription factors and is closely related to nuclear receptors such as the PPARs, FXR and RXR. Liver X receptors (LXRs) are important regulators of cholesterol, fatty acid, and glucose homeostasis. LXRs were earlier classified as orphan nuclear receptors, however, upon discovery of endogenous oxysterols as ligands they were subsequently deorphanized.

<span class="mw-page-title-main">Pregnane X receptor</span> Mammalian protein found in Homo sapiens

In the field of molecular biology, the pregnane X receptor (PXR), also known as the steroid and xenobiotic sensing nuclear receptor (SXR) or nuclear receptor subfamily 1, group I, member 2 (NR1I2) is a protein that in humans is encoded by the NR1I2 gene.

The ERRs are orphan nuclear receptors, meaning the identity of their endogenous ligand has yet to be unambiguously determined. They are named because of sequence homology with estrogen receptors, but do not appear to bind estrogens or other tested steroid hormones.

<span class="mw-page-title-main">Nuclear receptor 4A3</span> Protein-coding gene in the species Homo sapiens

The nuclear receptor 4A3 (NR4A3) also known as neuron-derived orphan receptor 1 (NOR1) is a protein that in humans is encoded by the NR4A3 gene. NR4A3 is a member of the nuclear receptor family of intracellular transcription factors.

<span class="mw-page-title-main">Liver receptor homolog-1</span> Protein-coding gene in the species Homo sapiens

The liver receptor homolog-1 (LRH-1) also known as totipotency pioneer factor NR5A2 is a protein that in humans is encoded by the NR5A2 gene. LRH-1 is a member of the nuclear receptor family of intracellular transcription factors.

<span class="mw-page-title-main">Small heterodimer partner</span> Protein-coding gene in the species Homo sapiens

The small heterodimer partner (SHP) also known as NR0B2 is a protein that in humans is encoded by the NR0B2 gene. SHP is a member of the nuclear receptor family of intracellular transcription factors. SHP is unusual for a nuclear receptor in that it lacks a DNA binding domain. Therefore, it is technically neither a transcription factor nor nuclear receptor but nevertheless it is still classified as such due to relatively high sequence homology with other nuclear receptor family members.

<span class="mw-page-title-main">Peroxisome proliferator-activated receptor gamma</span> Nuclear receptor protein found in humans

Peroxisome proliferator- activated receptor gamma, also known as the glitazone reverse insulin resistance receptor, or NR1C3 is a type II nuclear receptor functioning as a transcription factor that in humans is encoded by the PPARG gene.

<span class="mw-page-title-main">Rev-ErbA alpha</span> Protein-coding gene in the species Homo sapiens

Rev-Erb alpha (Rev-Erbɑ), also known as nuclear receptor subfamily 1 group D member 1 (NR1D1), is one of two Rev-Erb proteins in the nuclear receptor (NR) family of intracellular transcription factors. In humans, REV-ERBɑ is encoded by the NR1D1 gene, which is highly conserved across animal species.

<span class="mw-page-title-main">Hepatocyte nuclear factor 4 alpha</span> Protein-coding gene in the species Homo sapiens

Hepatocyte nuclear factor 4 alpha (HNF4A) also known as NR2A1 is a nuclear receptor that in humans is encoded by the HNF4A gene.

<span class="mw-page-title-main">Estrogen-related receptor gamma</span> Protein-coding gene in the species Homo sapiens

Estrogen-related receptor gamma (ERR-gamma), also known as NR3B3, is a nuclear receptor that in humans is encoded by the ESRRG gene. It behaves as a constitutive activator of transcription.

<span class="mw-page-title-main">COUP-TFII</span> Protein-coding gene in the species Homo sapiens

COUP-TFII, also known as NR2F2 is a protein that in humans is encoded by the NR2F2 gene. The COUP acronym stands for chicken ovalbumin upstream promoter.

<span class="mw-page-title-main">Estrogen-related receptor alpha</span> Protein-coding gene in the species Homo sapiens

Estrogen-related receptor alpha (ERRα), also known as NR3B1, is a nuclear receptor that in humans is encoded by the ESRRA gene. ERRα was originally cloned by DNA sequence homology to the estrogen receptor alpha, but subsequent ligand binding and reporter-gene transfection experiments demonstrated that estrogens did not regulate ERRα. Currently, ERRα is considered an orphan nuclear receptor.

<span class="mw-page-title-main">Testicular receptor 2</span> Human protein-coding gene

The testicular receptor 2 (TR2) also known as NR2C1 is protein that in humans is encoded by the NR2C1 gene. TR2 is a member of the nuclear receptor family of transcription factors.

<span class="mw-page-title-main">Liver X receptor beta</span> Protein-coding gene in the species Homo sapiens

Liver X receptor beta (LXR-β) is a member of the nuclear receptor family of transcription factors. LXR-β is encoded by the NR1H2 gene.

<span class="mw-page-title-main">PPARGC1B</span> Protein-coding gene in the species Homo sapiens

Peroxisome proliferator-activated receptor gamma coactivator 1-beta is a protein that in humans is encoded by the PPARGC1B gene.

<span class="mw-page-title-main">GRIP1 (gene)</span> Protein-coding gene in the species Homo sapiens

Glutamate receptor-interacting protein 1 is a protein that in humans is encoded by the GRIP1 gene.

A xenobiotic-sensing receptor is a receptor that binds xenobiotics. They include the following nuclear receptors:

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000143257 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000005677 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Baes M, Gulick T, Choi HS, Martinoli MG, Simha D, Moore DD (Mar 1994). "A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements". Molecular and Cellular Biology. 14 (3): 1544–52. doi:10.1128/mcb.14.3.1544. PMC   358513 . PMID   8114692.
  6. Wada T, Gao J, Xie W (Aug 2009). "PXR and CAR in energy metabolism". Trends in Endocrinology and Metabolism. 20 (6): 273–9. doi:10.1016/j.tem.2009.03.003. PMID   19595610. S2CID   25764831.
  7. Nicholas A. Meanwell (8 December 2014). Tactics in Contemporary Drug Design. Springer. pp. 182–. ISBN   978-3-642-55041-6.
  8. Kohalmy K, Tamási V, Kóbori L, Sárváry E, Pascussi JM, Porrogi P, Rozman D, Prough RA, Meyer UA, Monostory K (2007). "Dehydroepiandrosterone induces human CYP2B6 through the constitutive androstane receptor". Drug Metab. Dispos. 35 (9): 1495–501. doi:10.1124/dmd.107.016303. PMC   2423426 . PMID   17591676.
  9. Ueda A, Hamadeh HK, Webb HK, Yamamoto Y, Sueyoshi T, Afshari CA, Lehmann JM, Negishi M (Jan 2002). "Diverse roles of the nuclear orphan receptor CAR in regulating hepatic genes in response to phenobarbital". Molecular Pharmacology. 61 (1): 1–6. doi:10.1124/mol.61.1.1. PMID   11752199. S2CID   20184152.
  10. "Entrez Gene: NR1I3 nuclear receptor subfamily 1, group I, member 3".
  11. Kodama S, Negishi M (2006). "Phenobarbital confers its diverse effects by activating the orphan nuclear receptor car". Drug Metabolism Reviews. 38 (1–2): 75–87. doi:10.1080/03602530600569851. PMID   16684649. S2CID   43824300.
  12. Men, Shuaiqian; Wang, Hongbing (2023). "Phenobarbital in Nuclear Receptor Activation: An Update". Drug Metabolism and Disposition. 51 (2): 210–218. doi:10.1124/dmd.122.000859. ISSN   0090-9556. PMC   9900862 . PMID   36351837.
  13. Kawamoto T, Sueyoshi T, Zelko I, Moore R, Washburn K, Negishi M (Sep 1999). "Phenobarbital-responsive nuclear translocation of the receptor CAR in induction of the CYP2B gene". Molecular and Cellular Biology. 19 (9): 6318–22. doi:10.1128/mcb.19.9.6318. PMC   84602 . PMID   10454578.
  14. Honkakoski P, Moore R, Washburn KA, Negishi M (Apr 1998). "Activation by diverse xenochemicals of the 51-base pair phenobarbital-responsive enhancer module in the CYP2B10 gene". Molecular Pharmacology. 53 (4): 597–601. doi:10.1124/mol.53.4.597. PMID   9547348. S2CID   38390000.
  15. Sueyoshi T, Kawamoto T, Zelko I, Honkakoski P, Negishi M (Mar 1999). "The repressed nuclear receptor CAR responds to phenobarbital in activating the human CYP2B6 gene". The Journal of Biological Chemistry. 274 (10): 6043–6. doi: 10.1074/jbc.274.10.6043 . PMID   10037683.
  16. Mäkinen J, Frank C, Jyrkkärinne J, Gynther J, Carlberg C, Honkakoski P (Aug 2002). "Modulation of mouse and human phenobarbital-responsive enhancer module by nuclear receptors". Molecular Pharmacology. 62 (2): 366–78. doi:10.1124/mol.62.2.366. PMID   12130690.
  17. Tzameli I, Pissios P, Schuetz EG, Moore DD (May 2000). "The xenobiotic compound 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene is an agonist ligand for the nuclear receptor CAR". Molecular and Cellular Biology. 20 (9): 2951–8. doi:10.1128/MCB.20.9.2951-2958.2000. PMC   85552 . PMID   10757780.
  18. Maglich JM, Parks DJ, Moore LB, Collins JL, Goodwin B, Billin AN, Stoltz CA, Kliewer SA, Lambert MH, Willson TM, Moore JT (May 2003). "Identification of a novel human constitutive androstane receptor (CAR) agonist and its use in the identification of CAR target genes". The Journal of Biological Chemistry. 278 (19): 17277–83. doi: 10.1074/jbc.M300138200 . PMID   12611900.
  19. Yoshinari K, Kobayashi K, Moore R, Kawamoto T, Negishi M (Jul 2003). "Identification of the nuclear receptor CAR:HSP90 complex in mouse liver and recruitment of protein phosphatase 2A in response to phenobarbital". FEBS Letters. 548 (1–3): 17–20. doi:10.1016/s0014-5793(03)00720-8. PMID   12885400. S2CID   24859426.
  20. 1 2 Mutoh S, Sobhany M, Moore R, Perera L, Pedersen L, Sueyoshi T, Negishi M (May 2013). "Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling". Science Signaling. 6 (274): ra31. doi:10.1126/scisignal.2003705. PMC   5573139 . PMID   23652203.
  21. Rencurel F, Stenhouse A, Hawley SA, Friedberg T, Hardie DG, Sutherland C, Wolf CR (Feb 2005). "AMP-activated protein kinase mediates phenobarbital induction of CYP2B gene expression in hepatocytes and a newly derived human hepatoma cell line". The Journal of Biological Chemistry. 280 (6): 4367–73. doi: 10.1074/jbc.M412711200 . PMID   15572372.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.