Mevastatin

Last updated
Mevastatin
Mevastatin.svg
Clinical data
ATC code
  • None
Identifiers
  • (1S,7S,8S,8aR)-8-{2-[(2R,4R)-4-Hydroxy-6-oxotetrahydro-2H-pyran-2-yl]ethyl}-7-methyl-1,2,3,7,8,8a-hexahydronaphthalen-1-yl (2S)-2-methylbutanoate
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.131.541 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C23H34O5
Molar mass 390.520 g·mol−1
3D model (JSmol)
  • O=C(O[C@@H]1[C@H]3C(=C/CC1)\C=C/[C@@H]([C@@H]3CC[C@H]2OC(=O)C[C@H](O)C2)C)[C@@H](C)CC
  • InChI=1S/C23H34O5/c1-4-14(2)23(26)28-20-7-5-6-16-9-8-15(3)19(22(16)20)11-10-18-12-17(24)13-21(25)27-18/h6,8-9,14-15,17-20,22,24H,4-5,7,10-13H2,1-3H3/t14-,15-,17+,18+,19-,20-,22-/m0/s1 Yes check.svgY
  • Key:AJLFOPYRIVGYMJ-INTXDZFKSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Mevastatin (compactin, ML-236B) is a hypolipidemic agent that belongs to the statins class.

Contents

It was isolated from the mold Penicillium citrinum by Akira Endo in the 1970s, and he identified it as a HMG-CoA reductase inhibitor, [1] i.e., a statin. Mevastatin might be considered the first statin drug; [2] clinical trials on mevastatin were performed in the late 1970s in Japan, but it was never marketed. [3] The first statin drug available to the general public was lovastatin.

Mevastatin has since been derivatized to the compound pravastatin, which is a pharmaceutical used in the lowering of cholesterol and preventing cardiovascular disease.

In vitro , it has antiproliferative properties. [4]

A British group isolated the same compound from Penicillium brevicompactum, named it compactin, and published their results in 1976. [5] The British group mentions antifungal properties with no mention of HMG-CoA reductase inhibition.

High doses inhibit growth and proliferation of melanoma cells. [6]

Biosynthesis

Biosynthetic pathway Mevastatin Biosynthesis Corrected.svg
Biosynthetic pathway

Biosynthesis of mevastatin is primarily accomplished via a type 1 PKS pathway it proceeds in the PKS pathway as seen in figure 1 until it reaches a hexaketide state where it undergoes a Diels-Alder cyclization. After cyclization it continues via the PKS pathway to a nonaketide after which it is released and undergoes oxidation and dehydration. It is presumed that the oxidations are preformed by a polypeptide that is similar to cytochrome p450 monooxygenase, which is encoded by mlcC within the mevastatin gene. Lastly the biosynthesis is completed by the PKS facilitating the addition of a diketide sidechain and a methylation by SAM. [7] Figure 1 shows mevastatin in its acid form but it can also be in the more commonly seen lactone form. This pathway was first observed in Penicillium cilrinum and was later discovered that another type of fungus, Penicillium brevicompaetum also produced mevastatin via a PKS pathway.

Lactone and acid form of mevastatin Mevastatin Structure.svg
Lactone and acid form of mevastatin

Pharmacology

Sustained elevations of cholesterol in the blood increase the risk of cardiovascular disease. Mevastatin acts to lowers hepatic production of cholesterol by competitively inhibiting HMG-CoA reductase, the enzyme that catalyzes the rate-limiting step in the cholesterol biosynthesis pathway via the mevalonic acid pathway. When hepatic cholesterol levels are decreased it causes an increased uptake of low density lipoprotein (LDL) cholesterol and reduces cholesterol levels in the circulation. [8] It has also been shown that mevastatin upregulates endothelial nitric oxide synthase (eNOS) in mice, which is essential for maintaining a healthy cardiovascular system. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Cholesterol</span> Sterol biosynthesized by all animal cells

Cholesterol is the principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.

<span class="mw-page-title-main">Statin</span> Class of drugs used to lower cholesterol levels

Statins, also known as HMG-CoA reductase inhibitors, are a class of lipid-lowering medications that reduce illness and mortality in those who are at high risk of cardiovascular disease. They are the most commonly prescribed cholesterol-lowering drugs.

Dyslipidemia is a metabolic disorder characterized by abnormally high or low amounts of any or all lipids or lipoproteins in the blood. Dyslipidemia is a risk factor for the development of atherosclerotic cardiovascular diseases (ASCVD), which include coronary artery disease, cerebrovascular disease, and peripheral artery disease. Although dyslipidemia is a risk factor for ASCVD, abnormal levels don't mean that lipid lowering agents need to be started. Other factors, such as comorbid conditions and lifestyle in addition to dyslipidemia, is considered in a cardiovascular risk assessment. In developed countries, most dyslipidemias are hyperlipidemias; that is, an elevation of lipids in the blood. This is often due to diet and lifestyle. Prolonged elevation of insulin resistance can also lead to dyslipidemia. Likewise, increased levels of O-GlcNAc transferase (OGT) may cause dyslipidemia.

<span class="mw-page-title-main">Atorvastatin</span> Cholesterol-lowering medication

Atorvastatin, sold under the brand name Lipitor among others, is a statin medication used to prevent cardiovascular disease in those at high risk and to treat abnormal lipid levels. For the prevention of cardiovascular disease, statins are a first-line treatment. It is taken by mouth.

<span class="mw-page-title-main">Simvastatin</span> Lipid-lowering medication

Simvastatin, sold under the brand name Zocor among others, is a statin, a type of lipid-lowering medication. It is used along with exercise, diet, and weight loss to decrease elevated lipid levels. It is also used to decrease the risk of heart problems in those at high risk. It is taken by mouth.

<span class="mw-page-title-main">Pravastatin</span> Cholesterol lowering medication in the statin class

Pravastatin, sold under the brand name Pravachol among others, is a statin medication, used for preventing cardiovascular disease in those at high risk and treating abnormal lipids. It is suggested to be used together with diet changes, exercise, and weight loss. It is taken by mouth.

<span class="mw-page-title-main">Lovastatin</span> Chemical compound

Lovastatin, sold under the brand name Mevacor among others, is a statin medication, to treat high blood cholesterol and reduce the risk of cardiovascular disease. Its use is recommended together with lifestyle changes. It is taken by mouth.

<span class="mw-page-title-main">Cerivastatin</span> Chemical compound

Cerivastatin is a synthetic member of the class of statins used to lower cholesterol and prevent cardiovascular disease. It was marketed by the pharmaceutical company Bayer A.G. in the late 1990s, competing with Pfizer's highly successful atorvastatin (Lipitor). Cerivastatin was voluntarily withdrawn from the market worldwide in 2001, due to reports of fatal rhabdomyolysis.

<span class="mw-page-title-main">HMG-CoA reductase</span> Mammalian protein found in Homo sapiens

HMG-CoA reductase is the rate-controlling enzyme of the mevalonate pathway, the metabolic pathway that produces cholesterol and other isoprenoids. HMGCR catalyzes the conversion of HMG-CoA to mevalonic acid, a necessary step in the biosynthesis of cholesterol. Normally in mammalian cells this enzyme is competitively suppressed so that its effect is controlled. This enzyme is the target of the widely available cholesterol-lowering drugs known collectively as the statins, which help treat dyslipidemia.

In vascular diseases, endothelial dysfunction is a systemic pathological state of the endothelium. Along with acting as a semi-permeable membrane, the endothelium is responsible for maintaining vascular tone and regulating oxidative stress by releasing mediators, such as nitric oxide, prostacyclin and endothelin, and controlling local angiotensin-II activity.

<span class="mw-page-title-main">Mevalonic acid</span> Chemical compound

Mevalonic acid (MVA) is a key organic compound in biochemistry; the name is a contraction of dihydroxymethylvalerolactone. The carboxylate anion of mevalonic acid, which is the predominant form in biological environments, is known as mevalonate and is of major pharmaceutical importance. Drugs like statins stop the production of mevalonate by inhibiting HMG-CoA reductase.

<i>Monascus purpureus</i> Species of fungus

Monascus purpureus is a species of mold that is purplish-red in color. It is also known by the names ang-khak rice mold, corn silage mold, maize silage mold, and rice kernel discoloration.

<span class="mw-page-title-main">Pitavastatin</span> Chemical compound

Pitavastatin is a member of the blood cholesterol lowering medication class of statins.

<span class="mw-page-title-main">Akira Endo (biochemist)</span> Japanese biochemist

Akira Endo is a Japanese biochemist whose research into the relationship between fungi and cholesterol biosynthesis led to the development of statin drugs, which are some of the best-selling pharmaceuticals in history.

<span class="mw-page-title-main">Endothelial NOS</span> Protein and coding gene in humans

Endothelial NOS (eNOS), also known as nitric oxide synthase 3 (NOS3) or constitutive NOS (cNOS), is an enzyme that in humans is encoded by the NOS3 gene located in the 7q35-7q36 region of chromosome 7. This enzyme is one of three isoforms that synthesize nitric oxide (NO), a small gaseous and lipophilic molecule that participates in several biological processes. The other isoforms include neuronal nitric oxide synthase (nNOS), which is constitutively expressed in specific neurons of the brain and inducible nitric oxide synthase (iNOS), whose expression is typically induced in inflammatory diseases. eNOS is primarily responsible for the generation of NO in the vascular endothelium, a monolayer of flat cells lining the interior surface of blood vessels, at the interface between circulating blood in the lumen and the remainder of the vessel wall. NO produced by eNOS in the vascular endothelium plays crucial roles in regulating vascular tone, cellular proliferation, leukocyte adhesion, and platelet aggregation. Therefore, a functional eNOS is essential for a healthy cardiovascular system.

The discovery of HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase inhibitors, called statins, was a breakthrough in the prevention of hypercholesterolemia and related diseases. Hypercholesterolemia is considered to be one of the major risk factors for atherosclerosis which often leads to cardiovascular, cerebrovascular and peripheral vascular diseases. The statins inhibit cholesterol synthesis in the body and that leads to reduction in blood cholesterol levels, which is thought to reduce the risk of atherosclerosis and diseases caused by it.

Bruce D. Roth is an American organic and medicinal chemist who trained at Iowa State University and the University of Rochester, and, at the age of 32, discovered atorvastatin, the statin-class drug sold as Lipitor that would become the largest-selling drug in pharmaceutical history. His honours include being named a 2008 Hero of Chemistry by the American Chemical Society, and being chosen as the Perkin Medal awardee, the highest honour given in the U.S. chemical industry, by the Society of Chemical Industry, American section in 2013.

Medicinal fungi are fungi that contain metabolites or can be induced to produce metabolites through biotechnology to develop prescription drugs. Compounds successfully developed into drugs or under research include antibiotics, anti-cancer drugs, cholesterol and ergosterol synthesis inhibitors, psychotropic drugs, immunosuppressants and fungicides.

Penicillium citrinum is an anamorph, mesophilic fungus species of the genus of Penicillium which produces tanzawaic acid A-D, ACC, Mevastatin, Quinocitrinine A, Quinocitrinine B, and nephrotoxic citrinin. Penicillium citrinum is often found on moldy citrus fruits and occasionally it occurs in tropical spices and cereals. This Penicillium species also causes mortality for the mosquito Culex quinquefasciatus. Because of its mesophilic character, Penicillium citrinum occurs worldwide. The first statin (Mevastatin) was 1970 isolated from this species.

A steroidogenesis inhibitor, also known as a steroid biosynthesis inhibitor, is a type of drug which inhibits one or more of the enzymes that are involved in the process of steroidogenesis, the biosynthesis of endogenous steroids and steroid hormones. They may inhibit the production of cholesterol and other sterols, sex steroids such as androgens, estrogens, and progestogens, corticosteroids such as glucocorticoids and mineralocorticoids, and neurosteroids. They are used in the treatment of a variety of medical conditions that depend on endogenous steroids.

References

  1. Endo A, Kuroda M, Tsujita Y (December 1976). "ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium". The Journal of Antibiotics. 29 (12): 1346–8. doi: 10.7164/antibiotics.29.1346 . PMID   1010803.
  2. "The story of statins". Archived from the original on December 21, 2008.
  3. Endo A (October 2004). "The origin of the statins. 2004". Atherosclerosis. Supplements. 5 (3): 125–30. doi:10.1016/j.atherosclerosissup.2004.08.033. PMID   15531285.
  4. Wächtershäuser A, Akoglu B, Stein J (July 2001). "HMG-CoA reductase inhibitor mevastatin enhances the growth inhibitory effect of butyrate in the colorectal carcinoma cell line Caco-2". Carcinogenesis. 22 (7): 1061–7. doi: 10.1093/carcin/22.7.1061 . PMID   11408350.
  5. Brown AG, Smale TC, King TJ, Hasenkamp R, Thompson RH (1976). "Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum". Journal of the Chemical Society, Perkin Transactions 1 (11): 1165–70. doi:10.1039/P19760001165. PMID   945291.
  6. Glynn SA, O'Sullivan D, Eustace AJ, Clynes M, O'Donovan N (January 2008). "The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, simvastatin, lovastatin and mevastatin inhibit proliferation and invasion of melanoma cells". BMC Cancer. 8: 9. doi:10.1186/1471-2407-8-9. PMC   2253545 . PMID   18199328.
  7. 1 2 Abe Y, Suzuki T, Ono C, Iwamoto K, Hosobuchi M, Yoshikawa H (July 2002). "Molecular cloning and characterization of an ML-236B (compactin) biosynthetic gene cluster in Penicillium citrinum". Molecular Genetics and Genomics. 267 (5): 636–46. doi:10.1007/s00438-002-0697-y. PMID   12172803. S2CID   24427023.
  8. "Mevastatin". PubChem. U.S. National Library of Medicine. Retrieved 2016-06-04.
  9. Amin-Hanjani S, Stagliano NE, Yamada M, Huang PL, Liao JK, Moskowitz MA (April 2001). "Mevastatin, an HMG-CoA reductase inhibitor, reduces stroke damage and upregulates endothelial nitric oxide synthase in mice". Stroke. 32 (4): 980–6. doi:10.1161/01.STR.32.4.980. PMID   11283400.