Alipogene tiparvovec

Last updated

Alipogene tiparvovec
Gene therapy
Target gene LPL
Vector Adeno-associated virus 1
Clinical data
Trade names Glybera
Routes of
administration
Intramuscular injection
ATC code
Legal status
Legal status
  • EU:Rx-only
Identifiers
CAS Number
ChemSpider
  • none
UNII
KEGG
Gene therapy using an AAV vector. A new gene is inserted into a cell using the AAV protein shell. Once inside the nucleus, the new gene makes functional protein to treat a disease. AAV Gene Therapy.jpg
Gene therapy using an AAV vector. A new gene is inserted into a cell using the AAV protein shell. Once inside the nucleus, the new gene makes functional protein to treat a disease.

Alipogene tiparvovec, sold under the brand name Glybera, is a gene therapy treatment designed to reverse lipoprotein lipase deficiency (LPLD), a rare recessive disorder, due to mutations in LPL, which can cause severe pancreatitis. [1] It was recommended for approval by the European Medicines Agency in July 2012, and approved by the European Commission in November of the same year. It was the first marketing authorisation for a gene therapy treatment in either the European Union or the United States. [2] [3]

Contents

The medication is administered via a series of injections into the leg muscles. [4]

Glybera gained infamy as the "million-dollar drug" and proved commercially unsuccessful for a number of reasons. [4] [5] Its cost to patients and payers, together with the rarity of LPLD, high maintenance costs to its manufacturer uniQure, and failure to achieve approval in the US, led to uniQure withdrawing the drug after two years on the EU market. As of 2018, only 31 people worldwide have ever been administered Glybera, and uniQure has no plans to sell the drug in the US or Canada. [4] [5]

History

Glybera was developed over a period of decades by researchers at the University of British Columbia (UBC). [4] In 1986, Michael R. Hayden and John Kastelein began research at UBC, confirming the hypothesis that LPLD was caused by a gene mutation. Years later, in 2002, Hayden and Colin Ross successfully performed gene therapy on test mice to treat LPLD; their findings were featured on the September 2004 cover of Human Gene Therapy . Ross and Hayden next succeeded in treating cats in the same manner, with the help of Boyce Jones. [4]

Trials and approval

Meanwhile, Kastelein—who had, by 1998, become an international expert in lipid disorders—co-founded Amsterdam Molecular Therapeutics (AMT), which acquired rights to Hayden's research with the aim of releasing the drug in Europe.

Since LPLD is a rare condition (prevalence worldwide 1–2 per million), related clinical tests and trials have involved unusually small cohort sizes. The first main trial (CT-AMT-011-01) involved just 14 subjects, [6] and by 2015, a total of 27 individuals had been involved in phase III testing. [7] The second phase of testing focused on subjects living along the Saguenay River in Quebec, where LPLD affects people at the highest rate in the world (up to 200 per million) due to the founder effect.

Price

After over two years of testing, Glybera was approved in the European Union in 2012. [8] However, after spending millions of euros on Glybera's approval, AMT went bankrupt and its assets were acquired by uniQure. [4]

Alipogene tiparvovec was expected to cost around US$1.6 million per treatment in 2012, [9] —revised to $1 million in 2015, [10] —making it the most expensive medicine in the world at the time. [11] However, replacement therapy, a similar treatment, can cost over $300,000 per year, for life. [4]

In 2015, uniQure dropped its plans for approval in the US and exclusively licensed rights to sell the drug in Europe to Chiesi Farmaceutici for €31 million. [8] [4]

As of 2016, only one person had received the drug outside of a clinical trial. [8]

In April 2017, Chiesi quit selling Glybera and uniQure announced that it would not pursue the renewal of the marketing authorisation in the European Union when it was scheduled to expire that October, due to lack of demand. [12] Afterwards, the three remaining doses in Chiesi's inventory were given away to two patients in Germany and one patient in Italy for €1 each. [4]

Mechanism

The adeno-associated virus serotype 1 (AAV1) viral vector delivers an intact copy of the human lipoprotein lipase (LPL) gene to muscle cells. The LPL gene is not inserted into the cell's chromosomes but remains as free floating DNA in the nucleus. The injection is followed by immunosuppressive therapy to prevent immune reactions to the virus. [3]

Data from the clinical trials indicates that fat concentrations in blood were reduced between 3 and 12 weeks after injection, in nearly all patients. The advantages of AAV include apparent lack of pathogenicity, delivery to non-dividing cells, and much smaller risk of insertion [13] compared to retroviruses, which show random insertion with accompanying risk of cancer. AAV also presents very low immunogenicity, mainly restricted to generating neutralising antibodies, and little well defined cytotoxic response. [14] [15] [16] The cloning capacity of the vector is limited to replacement of the virus's 4.8 kilobase genome.

See also

Related Research Articles

<span class="mw-page-title-main">Gene therapy</span> Medical technology

Gene therapy is a medical technology that aims to produce a therapeutic effect through the manipulation of gene expression or through altering the biological properties of living cells.

<span class="mw-page-title-main">Lipoprotein lipase</span> Mammalian protein found in Homo sapiens

Lipoprotein lipase (LPL) (EC 3.1.1.34, systematic name triacylglycerol acylhydrolase (lipoprotein-dependent)) is a member of the lipase gene family, which includes pancreatic lipase, hepatic lipase, and endothelial lipase. It is a water-soluble enzyme that hydrolyzes triglycerides in lipoproteins, such as those found in chylomicrons and very low-density lipoproteins (VLDL), into two free fatty acids and one monoacylglycerol molecule:

Virotherapy is a treatment using biotechnology to convert viruses into therapeutic agents by reprogramming viruses to treat diseases. There are three main branches of virotherapy: anti-cancer oncolytic viruses, viral vectors for gene therapy and viral immunotherapy. These branches use three different types of treatment methods: gene overexpression, gene knockout, and suicide gene delivery. Gene overexpression adds genetic sequences that compensate for low to zero levels of needed gene expression. Gene knockout uses RNA methods to silence or reduce expression of disease-causing genes. Suicide gene delivery introduces genetic sequences that induce an apoptotic response in cells, usually to kill cancerous growths. In a slightly different context, virotherapy can also refer more broadly to the use of viruses to treat certain medical conditions by killing pathogens.

<span class="mw-page-title-main">Adeno-associated virus</span> Species of virus

Adeno-associated viruses (AAV) are small viruses that infect humans and some other primate species. They belong to the genus Dependoparvovirus, which in turn belongs to the family Parvoviridae. They are small replication-defective, nonenveloped viruses and have linear single-stranded DNA (ssDNA) genome of approximately 4.8 kilobases (kb).

<span class="mw-page-title-main">Viral vector</span> Biotechnology to deliver genetic material into a cell

Viral vectors are modified viruses designed to deliver genetic material into cells. This process can be performed inside an organism or in cell culture. Viral vectors have widespread applications in basic research, agriculture, and medicine.

A helper dependent virus, also termed a gutless virus, is a synthetic viral vector dependent on the assistance of a helper virus in order to replicate, and can be used for purposes such as gene therapy. Naturally-occurring satellite viruses are also helper virus dependent, and can sometimes be modified to become viral vectors.

<span class="mw-page-title-main">Lipoprotein lipase deficiency</span> Genetic disorder in fat handling

Lipoprotein lipase deficiency is a genetic disorder in which a person has a defective gene for lipoprotein lipase, which leads to very high triglycerides, which in turn causes stomach pain and deposits of fat under the skin, and which can lead to problems with the pancreas and liver, which in turn can lead to diabetes. The disorder only occurs if a child acquires the defective gene from both parents. It is managed by restricting fat in diet to less than 20 g/day.

<span class="mw-page-title-main">Lipase</span> Class of enzymes which cleave fats via hydrolysis

In biochemistry, lipase refers to a class of enzymes that catalyzes the hydrolysis of fats. Some lipases display broad substrate scope including esters of cholesterol, phospholipids, and of lipid-soluble vitamins and sphingomyelinases; however, these are usually treated separately from "conventional" lipases. Unlike esterases, which function in water, lipases "are activated only when adsorbed to an oil–water interface". Lipases perform essential roles in digestion, transport and processing of dietary lipids in most, if not all, organisms.

Retinal gene therapy holds a promise in treating different forms of non-inherited and inherited blindness.

<span class="mw-page-title-main">Lysosomal acid lipase deficiency</span> Medical condition

Lysosomal acid lipase deficiency or Wolman Disease, is an autosomal recessive inborn error of metabolism that results in the body not producing enough active lysosomal acid lipase (LAL) enzyme. This enzyme plays an important role in breaking down fatty material in the body. Infants, children and adults that have LAL deficiency experience a range of serious health problems. The lack of the LAL enzyme can lead to a build-up of fatty material in a number of body organs including the liver, spleen, gut, in the wall of blood vessels and other important organs.

Mydicar is a genetically targeted enzyme replacement therapy being studied for use in patients with severe heart failure. It is designed to increase the level of SERCA2a, a sarcoplasmic endoplasmic reticulum calcium (Ca2+) ATPase found in the membrane of the sarcoplasmic reticulum (SR). The SERCA2a gene is delivered to the heart via an adeno-associated viral vector. Using the α-myosin heavy chain gene promoter in the cardiac muscle cells, also called cardiomyocytes, Mydicar is able to direct the gene expression only to the heart muscle. Mydicar is being tested in a phase 2 study, in which has been compared to a placebo in 39 advanced heart failure patients. Thus far, patients treated with Mydicar have shown a 52% reduction in the risk of worsening heart failure compared to patients treated with the placebo.

Gene therapy for osteoarthritis is the application of gene therapy to treat osteoarthritis (OA). Unlike pharmacological treatments which are administered locally or systemically as a series of interventions, gene therapy aims to establish sustained therapeutic effect after a single, local injection.

Self-complementary adeno-associated virus (scAAV) is a viral vector engineered from the naturally occurring adeno-associated virus (AAV) to be used as a tool for gene therapy. Use of recombinant AAV (rAAV) has been successful in clinical trials addressing a variety of diseases. This lab-made progeny of rAAV is termed "self-complementary" because the coding region has been designed to form an intra-molecular double-stranded DNA template. A rate-limiting step for the standard AAV genome involves the second-strand synthesis since the typical AAV genome is a single-stranded DNA template. However, this is not the case for scAAV genomes. Upon infection, rather than waiting for cell mediated synthesis of the second strand, the two complementary halves of scAAV will associate to form one double stranded DNA (dsDNA) unit that is ready for immediate replication and transcription. The caveat of this construct is that instead of the full coding capacity found in rAAV (4.7–6kb) scAAV can only hold about half of that amount (≈2.4kb).

<span class="mw-page-title-main">GPIHBP1</span> Protein-coding gene in the species Homo sapiens

Glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1 (GPI-HBP1) also known as high density lipoprotein-binding protein 1 is a protein that in humans is encoded by the GPIHBP1 gene.

James M. Wilson is an American biomedical researcher and CEO of two biotech companies, Gemma Biotherapeutics and Franklin Biolabs, focused on gene therapies. He previously served as the Director of the Gene Therapy Program, Rose H. Weiss Professor and Director of the Orphan Disease Center, and Professor of Medicine and Pediatrics at the Perelman School of Medicine at the University of Pennsylvania. Previously, he held the John Herr Musser endowed professorship at the Perelman School of Medicine.

Adeno-associated virus (AAV) has been researched as a viral vector in gene therapy for cancer treatment as an oncolytic virus. Currently there are not any FDA approved AAV cancer treatments, as the first FDA approved AAV treatment was approved December 2017. However, there are many Oncolytic AAV applications that are in development and have been researched.

Richard Jude Samulski is an American scientist, inventor, and academic recognized for his pioneering work in gene therapy and adeno-associated virus vectors (AAV) in the fields of molecular virology and pharmacology.

Jean Bennett is the F. M. Kirby Professor of Ophthalmology in the Perelman School of Medicine at the University of Pennsylvania. Her research focuses on gene therapy for retinal diseases. Her laboratory developed the first FDA approved gene therapy for use in humans, which treats a rare form of blindness. She was elected a member of the National Academy of Sciences in 2022.

Valoctocogene roxaparvovec, sold under the brand name Roctavian, is a gene therapy used for the treatment of hemophilia A. It was developed by BioMarin Pharmaceutical. Valoctocogene roxaparvovec is made of a virus (AAV5) that has been modified to contain the gene for factor VIII, which is lacking in people with hemophilia A. It is an adeno-associated virus vector-based gene therapy. It is given by intravenous infusion.

References

  1. Pollack A (20 July 2012). "European Agency Backs Approval of a Gene Therapy". The New York Times.
  2. Gallagher J (2 November 2012). "Gene therapy: Glybera approved by European Commission". BBC News. Retrieved 15 December 2012.
  3. 1 2 Richards S (5 November 2012). "Gene Therapy Arrives in Europe". The Scientist. Retrieved 16 November 2012.
  4. 1 2 3 4 5 6 7 8 9 Crowe K. "The million-dollar drug". CBC News. Retrieved 18 November 2018.
  5. 1 2 Warner E (20 April 2017). "Goodbye Glybera! The World's First Gene Therapy will be Withdrawn". Labiotech. Retrieved 23 June 2019.
  6. Stroes ES, Nierman MC, Meulenberg JJ, Franssen R, Twisk J, Henny CP, et al. (December 2008). "Intramuscular administration of AAV1-lipoprotein lipase S447X lowers triglycerides in lipoprotein lipase-deficient patients". Arteriosclerosis, Thrombosis, and Vascular Biology. 28 (12): 2303–2304. doi: 10.1161/ATVBAHA.108.175620 . PMID   18802015.
  7. Scott LJ (February 2015). "Alipogene tiparvovec: a review of its use in adults with familial lipoprotein lipase deficiency". Drugs. 75 (2): 175–182. doi:10.1007/s40265-014-0339-9. PMID   25559420. S2CID   31609061.
  8. 1 2 3 Regalado A (4 May 2016). "The World's Most Expensive Medicine Is a Bust". MIT Technology Review. Retrieved 31 July 2020.
  9. Whalen J (2 November 2012). "Gene-Therapy Approval Marks Major Milestone". The Wall Street Journal .
  10. Morrison C (3 March 2015). "$1-million price tag set for Glybera gene therapy". TradeSecrets. 33 (3): 217–218. doi:10.1038/nbt0315-217. PMID   25748892. S2CID   205266596.
  11. Harris L (5 November 2012). "Gene therapy approved in Europe for first time". Pensacola, FL: BioNews. Archived from the original on 4 January 2014.
  12. Sagonowsky E (20 April 2017). "With its launch fizzling out, uniQure gives up on $1M+ gene therapy Glybera". FiercePharma. Archived from the original on 1 September 2017. Retrieved 7 August 2017.
  13. Valdmanis PN, Lisowski L, Kay MA (November 2012). "rAAV-mediated tumorigenesis: still unresolved after an AAV assault". Molecular Therapy. 20 (11): 2014–2017. doi:10.1038/mt.2012.220. PMC   3498811 . PMID   23131853.
  14. Chirmule N, Propert K, Magosin S, Qian Y, Qian R, Wilson J (September 1999). "Immune responses to adenovirus and adeno-associated virus in humans". Gene Therapy. 6 (9): 1574–1583. doi:10.1038/sj.gt.3300994. PMID   10490767. S2CID   35335515.
  15. Hernandez YJ, Wang J, Kearns WG, Loiler S, Poirier A, Flotte TR (October 1999). "Latent adeno-associated virus infection elicits humoral but not cell-mediated immune responses in a nonhuman primate model". Journal of Virology. 73 (10): 8549–8558. doi:10.1128/JVI.73.10.8549-8558.1999. PMC   112875 . PMID   10482608.
  16. Ponnazhagan S, Mukherjee P, Yoder MC, Wang XS, Zhou SZ, Kaplan J, et al. (April 1997). "Adeno-associated virus 2-mediated gene transfer in vivo: organ-tropism and expression of transduced sequences in mice". Gene. 190 (1): 203–210. doi:10.1016/S0378-1119(96)00576-8. PMID   9185868.