Retrovirus

Last updated

Retroviridae
Hiv gross.png
HIV retrovirus schematic of cell infection, virus production and virus structure
Virus classification OOjs UI icon edit-ltr.svg
(unranked): Virus
Realm: Riboviria
Kingdom: Pararnavirae
Phylum: Artverviricota
Class: Revtraviricetes
Order: Ortervirales
Family:Retroviridae
Subfamilies and genera [1]

A retrovirus is a type of virus that inserts a DNA copy of its RNA genome into the DNA of a host cell that it invades, thus changing the genome of that cell. [2] After invading a host cell's cytoplasm, the virus uses its own reverse transcriptase enzyme to produce DNA from its RNA genome, the reverse of the usual pattern, thus retro (backward). The new DNA is then incorporated into the host cell genome by an integrase enzyme, at which point the retroviral DNA is referred to as a provirus. The host cell then treats the viral DNA as part of its own genome, transcribing and translating the viral genes along with the cell's own genes, producing the proteins required to assemble new copies of the virus. Many retroviruses cause serious diseases in humans, other mammals, and birds. [3]

Contents

Retroviruses have many subfamilies in three basic groups.

The specialized DNA-infiltration enzymes in retroviruses make them valuable research tools in molecular biology, and they have been used successfully in gene delivery systems. [6]

Evidence from endogenous retroviruses (inherited provirus DNA in animal genomes) suggests that retroviruses have been infecting vertebrates for at least 450 million years. [7]

Structure

Virions, viruses in the form of independent particles of retroviruses, consist of enveloped particles about 100  nm in diameter. The outer lipid envelope consists of glycoprotein. [8] The virions also contain two identical single-stranded RNA molecules 7–10 kilobases in length. The two molecules are present as a dimer, formed by base pairing between complementary sequences. Interaction sites between the two RNA molecules have been identified as a "kissing stem-loop". [3] Although virions of different retroviruses do not have the same morphology or biology, all the virion components are very similar. [9]

The main virion components are:

The genomic and subgenomic organization of a prototypical retrovirus. Abbreviations are explained in the file description. Prototypical retrovirus genomic organization.svg
The genomic and subgenomic organization of a prototypical retrovirus. Abbreviations are explained in the file description.

Genomic structure

The retroviral genome is packaged as viral particles. These viral particles are dimers of single-stranded, positive-sense, linear RNA molecules. [10]

Retroviruses (and orterviruses in general) follow a layout of 5'–gagpropolenv–3' in the RNA genome. gag and pol encode polyproteins, each managing the capsid and replication. The pol region encodes enzymes necessary for viral replication, such as reverse transcriptase, protease and integrase. [19] Depending on the virus, the genes may overlap or fuse into larger polyprotein chains. Some viruses contain additional genes. The lentivirus genus, the spumavirus genus, the HTLV / bovine leukemia virus (BLV) genus, and a newly introduced fish virus genus are retroviruses classified as complex. These viruses have genes called accessory genes, in addition to gag, pro, pol and env genes. Accessory genes are located between pol and env, downstream from the env, including the U3 region of LTR, or in the env and overlapping portions. While accessory genes have auxiliary roles, they also coordinate and regulate viral gene expression. In addition, some retroviruses may carry genes called oncogenes or onc genes from another class. Retroviruses with these genes (also called transforming viruses) are known for their ability to quickly cause tumors in animals and transform cells in culture into an oncogenic state. [20]

The polyproteins are cleaved into smaller proteins each with their own function. The nucleotides encoding them are known as subgenes. [18]

Multiplication

A retrovirus has a membrane containing glycoproteins, which are able to bind to a receptor protein on a host cell. There are two strands of RNA within the cell that have three enzymes: protease, reverse transcriptase, and integrase (1). The first step of replication is the binding of the glycoprotein to the receptor protein (2). Once these have been bound, the cell membrane degrades, becoming part of the host cell, and the RNA strands and enzymes enter the cell (3). Within the cell, reverse transcriptase creates a complementary strand of DNA from the retrovirus RNA and the RNA is degraded; this strand of DNA is known as cDNA (4). The cDNA is then replicated, and the two strands form a weak bond and enter the nucleus (5). Once in the nucleus, the DNA is integrated into the host cell's DNA with the help of integrase (6). This cell can either stay dormant, or RNA may be synthesized from the DNA and used to create the proteins for a new retrovirus (7). Ribosome units are used to translate the mRNA of the virus into the amino acid sequences which can be made into proteins in the rough endoplasmic reticulum. This step will also make viral enzymes and capsid proteins (8). Viral RNA will be made in the nucleus. These pieces are then gathered together and are pinched off of the cell membrane as a new retrovirus (9). Life Cycle of a Retrovirus.svg
A retrovirus has a membrane containing glycoproteins, which are able to bind to a receptor protein on a host cell. There are two strands of RNA within the cell that have three enzymes: protease, reverse transcriptase, and integrase (1). The first step of replication is the binding of the glycoprotein to the receptor protein (2). Once these have been bound, the cell membrane degrades, becoming part of the host cell, and the RNA strands and enzymes enter the cell (3). Within the cell, reverse transcriptase creates a complementary strand of DNA from the retrovirus RNA and the RNA is degraded; this strand of DNA is known as cDNA (4). The cDNA is then replicated, and the two strands form a weak bond and enter the nucleus (5). Once in the nucleus, the DNA is integrated into the host cell's DNA with the help of integrase (6). This cell can either stay dormant, or RNA may be synthesized from the DNA and used to create the proteins for a new retrovirus (7). Ribosome units are used to translate the mRNA of the virus into the amino acid sequences which can be made into proteins in the rough endoplasmic reticulum. This step will also make viral enzymes and capsid proteins (8). Viral RNA will be made in the nucleus. These pieces are then gathered together and are pinched off of the cell membrane as a new retrovirus (9).

When retroviruses have integrated their own genome into the germ line, their genome is passed on to a following generation. These endogenous retroviruses (ERVs), contrasted with exogenous ones, now make up 5–8% of the human genome. [21] Most insertions have no known function and are often referred to as "junk DNA". However, many endogenous retroviruses play important roles in host biology, such as control of gene transcription, cell fusion during placental development in the course of the germination of an embryo, and resistance to exogenous retroviral infection. Endogenous retroviruses have also received special attention in the research of immunology-related pathologies, such as autoimmune diseases like multiple sclerosis, although endogenous retroviruses have not yet been proven to play any causal role in this class of disease. [22]

While transcription was classically thought to occur only from DNA to RNA, reverse transcriptase transcribes RNA into DNA. The term "retro" in retrovirus refers to this reversal (making DNA from RNA) of the usual direction of transcription. It still obeys the central dogma of molecular biology, which states that information can be transferred from nucleic acid to nucleic acid but cannot be transferred back from protein to either protein or nucleic acid. Reverse transcriptase activity outside of retroviruses has been found in almost all eukaryotes, enabling the generation and insertion of new copies of retrotransposons into the host genome. These inserts are transcribed by enzymes of the host into new RNA molecules that enter the cytosol. Next, some of these RNA molecules are translated into viral proteins. The proteins encoded by the gag and pol genes are translated from genome-length mRNAs into Gag and Gag–Pol polyproteins. In example, for the gag gene; it is translated into molecules of the capsid protein, and for the pol gene; it is translated into molecules of reverse transcriptase. Retroviruses need a lot more of the Gag proteins than the Pol proteins and have developed advanced systems to synthesize the required amount of each. As an example, after Gag synthesis nearly 95 percent of the ribosomes terminate translation, while other ribosomes continue translation to synthesize Gag–Pol. In the rough endoplasmic reticulum glycosylation begins and the env gene is translated from spliced mRNAs in the rough endoplasmic reticulum, into molecules of the envelope protein. When the envelope protein molecules are carried to the Golgi complex, they are divided into surface glycoprotein and transmembrane glycoprotein by a host protease. These two glycoprotein products stay in close affiliation, and they are transported to the plasma membrane after further glycosylation. [3]

It is important to note that a retrovirus must "bring" its own reverse transcriptase in its capsid, otherwise it is unable to utilize the enzymes of the infected cell to carry out the task, due to the unusual nature of producing DNA from RNA.[ citation needed ]

Industrial drugs that are designed as protease and reverse-transcriptase inhibitors are made such that they target specific sites and sequences within their respective enzymes. However these drugs can quickly become ineffective due to the fact that the gene sequences that code for the protease and the reverse transcriptase quickly mutate. These changes in bases cause specific codons and sites with the enzymes to change and thereby avoid drug targeting by losing the sites that the drug actually targets.[ citation needed ]

Because reverse transcription lacks the usual proofreading of DNA replication, a retrovirus mutates very often. This enables the virus to grow resistant to antiviral pharmaceuticals quickly, and impedes the development of effective vaccines and inhibitors for the retrovirus. [23]

One difficulty faced with some retroviruses, such as the Moloney retrovirus, involves the requirement for cells to be actively dividing for transduction. As a result, cells such as neurons are very resistant to infection and transduction by retroviruses. This gives rise to a concern that insertional mutagenesis due to integration into the host genome might lead to cancer or leukemia. This is unlike Lentivirus , a genus of Retroviridae, which are able to integrate their RNA into the genome of non-dividing host cells.[ citation needed ]

Recombination

Two RNA genomes are packaged into each retrovirus particle, but, after an infection, each virus generates only one provirus. [24] After infection, reverse transcription occurs and this process is accompanied by recombination. Recombination involves template strand switching between the two genome copies (copy choice recombination) during reverse transcription. From 5 to 14 recombination events per genome occur at each replication cycle. [25] Genetic recombination appears to be necessary for maintaining genome integrity and as a repair mechanism for salvaging damaged genomes. [24]

Transmission

Provirus

The DNA formed after reverse transcription (the provirus) is longer than the RNA genome because each of the terminals have the U3 - R - U5 sequences called long terminal repeat (LTR). Thus, 5' terminal has the extra U3 sequence, while the other terminal has the U5 sequence. [15] LTRs are able to send signals for vital tasks to be carried out such as initiation of RNA production or management of the rate of transcription. This way, LTRs can control replication, hence, the entire progress of the viral cycle. [27] Although located in the nucleus, the non-integrated retroviral cDNA is a very weak substrate for transcription. For this reason, an integrated provirus is a necessary for permanent and an effective expression of retroviral genes. [10]

This DNA can be incorporated into host genome as a provirus that can be passed on to progeny cells. The retrovirus DNA is inserted at random into the host genome. Because of this, it can be inserted into oncogenes. In this way some retroviruses can convert normal cells into cancer cells. Some provirus remains latent in the cell for a long period of time before it is activated by the change in cell environment.[ citation needed ]

Early evolution

Studies of retroviruses led to the first demonstrated synthesis of DNA from RNA templates, a fundamental mode for transferring genetic material that occurs in both eukaryotes and prokaryotes. It has been speculated that the RNA to DNA transcription processes used by retroviruses may have first caused DNA to be used as genetic material. In this model, the RNA world hypothesis, cellular organisms adopted the more chemically stable DNA when retroviruses evolved to create DNA from the RNA templates.[ citation needed ]

An estimate of the date of evolution of the foamy-like endogenous retroviruses placed the time of the most recent common ancestor at > 450  million years ago. [28]

Gene therapy

Gammaretroviral and lentiviral vectors for gene therapy have been developed that mediate stable genetic modification of treated cells by chromosomal integration of the transferred vector genomes. This technology is of use, not only for research purposes, but also for clinical gene therapy aiming at the long-term correction of genetic defects, e.g., in stem and progenitor cells. Retroviral vector particles with tropism for various target cells have been designed. Gammaretroviral and lentiviral vectors have so far been used in more than 300 clinical trials, addressing treatment options for various diseases. [6] [29] Retroviral mutations can be developed to make transgenic mouse models to study various cancers and their metastatic models.[ citation needed ]

Cancer

Retroviruses that cause tumor growth include Rous sarcoma virus and mouse mammary tumor virus . Cancer can be triggered by proto-oncogenes that were mistakenly incorporated into proviral DNA or by the disruption of cellular proto-oncogenes. Rous sarcoma virus contains the src gene that triggers tumor formation. Later it was found that a similar gene in cells is involved in cell signaling, which was most likely excised with the proviral DNA. Nontransforming viruses can randomly insert their DNA into proto-oncogenes, disrupting the expression of proteins that regulate the cell cycle. The promoter of the provirus DNA can also cause over expression of regulatory genes. Retroviruses can cause diseases such as cancer and immunodeficiency. If viral DNA is integrated into host chromosomes, it can lead to permanent infections. It is therefore important to discover the body's response to retroviruses. Exogenous retroviruses are especially associated with pathogenic diseases. For example, mice have mouse mammary tumor virus (MMTV), which is a retrovirus. This virus passes to newborn mice through mammary milk. When they are 6 months old, the mice carrying the virus get mammary cancer because of the retrovirus. In addition, leukemia virus I (HTLV-1), found in human T cell, has been found in humans for many years. It is estimated that this retrovirus causes leukemia in the ages of 40 and 50. [30] It has a replicable structure that can induce cancer. In addition to the usual gene sequence of retroviruses, HTLV-1 contains a fourth region, PX. This region encodes Tax, Rex, p12, p13 and p30 regulatory proteins. The Tax protein initiates the leukemic process and organizes the transcription of all viral genes in the integrated HTLV proviral DNA. [31]

Classification

Phylogeny of Retroviridae Phylogeny of Retroviruses.svg
Phylogeny of Retroviridae

Exogenous

Exogenous retroviruses are infectious RNA- or DNA-containing viruses that are transmitted from one organism to another. In the Baltimore classification system, which groups viruses together based on their manner of messenger RNA synthesis, they are classified into two groups: Group VI: single-stranded RNA viruses with a DNA intermediate in their life cycle, and Group VII: double-stranded DNA viruses with an RNA intermediate in their life cycle.[ citation needed ]

Group VI viruses

All members of Group VI use virally encoded reverse transcriptase, an RNA-dependent DNA polymerase, to produce DNA from the initial virion RNA genome. This DNA is often integrated into the host genome, as in the case of retroviruses and pseudoviruses, where it is replicated and transcribed by the host.

Group VI includes:

The family Retroviridae was previously divided into three subfamilies (Oncovirinae, Lentivirinae, and Spumavirinae), but are now divided into two: Orthoretrovirinae and Spumaretrovirinae. The term oncovirus is now commonly used to describe a cancer-causing virus. This family now includes the following genera:

Note that according to ICTV 2017, genus Spumavirus has been divided into five genera, and its former type species Simian foamy virus is now upgraded to genus Simiispumavirus with not less than 14 species, including new type species Eastern chimpanzee simian foamy virus . [32]

Group VII viruses

Both families in Group VII have DNA genomes contained within the invading virus particles. The DNA genome is transcribed into both mRNA, for use as a transcript in protein synthesis, and pre-genomic RNA, for use as the template during genome replication. Virally encoded reverse transcriptase uses the pre-genomic RNA as a template for the creation of genomic DNA.

Group VII includes:

The latter family is closely related to the newly proposed

whilst families Belpaoviridae , Metaviridae , Pseudoviridae , Retroviridae , and Caulimoviridae constitute the order Ortervirales . [34]

Endogenous

Endogenous retroviruses are not formally included in this classification system, and are broadly classified into three classes, on the basis of relatedness to exogenous genera:

Controversy

Retroviruses have been the focus of several recent claims and assertions which have been largely discredited by the science community. An initial study in 2009 seemed to make new findings which might change some of the established knowledge on this topic. However, although later research disproved some of the claims made about retroviruses, there are several controversial figures who continue to make claims which overall are considered to not have any valid basis or consensus in support of these claims. [35] [36] [37]

Treatment

Antiretroviral drugs are medications for the treatment of infection by retroviruses, primarily HIV. Different classes of antiretroviral drugs act on different stages of the HIV life cycle. Combination of several (typically three or four) antiretroviral drugs is known as highly active antiretroviral therapy (HAART). [38]

Treatment of veterinary retroviruses

Feline leukemia virus and Feline immunodeficiency virus infections are treated with biologics, including the only immunomodulator currently licensed for sale in the United States, Lymphocyte T-Cell Immune Modulator (LTCI). [39]

Related Research Articles

A provirus is a virus genome that is integrated into the DNA of a host cell. In the case of bacterial viruses (bacteriophages), proviruses are often referred to as prophages. However, proviruses are distinctly different from prophages and these terms should not be used interchangeably. Unlike prophages, proviruses do not excise themselves from the host genome when the host cell is stressed.

<span class="mw-page-title-main">Reverse transcriptase</span> Enzyme which generates DNA

A reverse transcriptase (RT) is an enzyme used to convert RNA genome to DNA, a process termed reverse transcription. Reverse transcriptases are used by viruses such as HIV, COVID-19, and hepatitis B to replicate their genomes, by retrotransposon mobile genetic elements to proliferate within the host genome, and by eukaryotic cells to extend the telomeres at the ends of their linear chromosomes. Contrary to a widely held belief, the process does not violate the flows of genetic information as described by the classical central dogma, as transfers of information from RNA to DNA are explicitly held possible.

<span class="mw-page-title-main">Retrotransposon</span> Type of genetic component

Retrotransposons are mobile elements which move in the host genome by converting their transcribed RNA into DNA through reverse transcription. Thus, they differ from Class II transposable elements, or DNA transposons, in utilizing an RNA intermediate for the transposition and leaving the transposition donor site unchanged.

Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus like the HTL viruses, HI viruses, and BLV. It belongs to the genus Betaretrovirus. MMTV was formerly known as Bittner virus, and previously the "milk factor", referring to the extra-chromosomal vertical transmission of murine breast cancer by adoptive nursing, demonstrated in 1936, by John Joseph Bittner while working at the Jackson Laboratory in Bar Harbor, Maine. Bittner established the theory that a cancerous agent, or "milk factor", could be transmitted by cancerous mothers to young mice from a virus in their mother's milk. The majority of mammary tumors in mice are caused by mouse mammary tumor virus.

Metaviridae is a family of viruses which exist as Ty3-gypsy LTR retrotransposons in a eukaryotic host's genome. They are closely related to retroviruses: members of the family Metaviridae share many genomic elements with retroviruses, including length, organization, and genes themselves. This includes genes that encode reverse transcriptase, integrase, and capsid proteins. The reverse transcriptase and integrase proteins are needed for the retrotransposon activity of the virus. In some cases, virus-like particles can be formed from capsid proteins.

Lentivirus is a genus of retroviruses that cause chronic and deadly diseases characterized by long incubation periods, in humans and other mammalian species. The genus includes the human immunodeficiency virus (HIV), which causes AIDS. Lentiviruses are distributed worldwide, and are known to be hosted in apes, cows, goats, horses, cats, and sheep as well as several other mammals.

<i>Gammaretrovirus</i> Genus of viruses

Gammaretrovirus is a genus in the Retroviridae family. Example species are the murine leukemia virus and the feline leukemia virus. They cause various sarcomas, leukemias and immune deficiencies in mammals, reptiles and birds.

<span class="mw-page-title-main">Endogenous retrovirus</span> Inherited retrovirus encoded in an organisms genome

Endogenous retroviruses (ERVs) are endogenous viral elements in the genome that closely resemble and can be derived from retroviruses. They are abundant in the genomes of jawed vertebrates, and they comprise up to 5–8% of the human genome.

The genome and proteins of HIV (human immunodeficiency virus) have been the subject of extensive research since the discovery of the virus in 1983. "In the search for the causative agent, it was initially believed that the virus was a form of the Human T-cell leukemia virus (HTLV), which was known at the time to affect the human immune system and cause certain leukemias. However, researchers at the Pasteur Institute in Paris isolated a previously unknown and genetically distinct retrovirus in patients with AIDS which was later named HIV." Each virion comprises a viral envelope and associated matrix enclosing a capsid, which itself encloses two copies of the single-stranded RNA genome and several enzymes. The discovery of the virus itself occurred two years following the report of the first major cases of AIDS-associated illnesses.

<i>Jaagsiekte sheep retrovirus</i> Species of virus

Jaagsiekte sheep retrovirus (JSRV) is a betaretrovirus which is the causative agent of a contagious lung cancer in sheep, called ovine pulmonary adenocarcinoma.

Rous sarcoma virus (RSV) is a retrovirus and is the first oncovirus to have been described. It causes sarcoma in chickens.

<i>Murine leukemia virus</i> Species of virus

The murine leukemia viruses are retroviruses named for their ability to cause cancer in murine (mouse) hosts. Some MLVs may infect other vertebrates. MLVs include both exogenous and endogenous viruses. Replicating MLVs have a positive sense, single-stranded RNA (ssRNA) genome that replicates through a DNA intermediate via the process of reverse transcription.

Pseudodiploid or pseudoploid refers to one of the essential components in viral reproduction. It means having two RNA genomes per virion but giving rise to only one DNA copy in infected cells.

Simian foamy virus (SFV), historically Human foamy virus (HFV), is a species of the genus Spumavirus that belongs to the family of Retroviridae. It has been identified in a wide variety of primates, including prosimians, New World and Old World monkeys, as well as apes, and each species has been shown to harbor a unique (species-specific) strain of SFV, including African green monkeys, baboons, macaques, and chimpanzees. As it is related to the more well-known retrovirus human immunodeficiency virus (HIV), its discovery in primates has led to some speculation that HIV may have been spread to the human species in Africa through contact with blood from apes, monkeys, and other primates, most likely through bushmeat-hunting practices.

Bovine immunodeficiency virus (BIV) is a retrovirus belonging to the genus Lentivirus. It is similar to the human immunodeficiency virus (HIV) and infects cattle. The cells primarily infected are lymphocytes and monocytes/macrophages.

Mason-Pfizer monkey virus (M-PMV), formerly Simian retrovirus (SRV), is a species of retroviruses that usually infect and cause a fatal immune deficiency in Asian macaques. The ssRNA virus appears sporadically in mammary carcinoma of captive macaques at breeding facilities which expected as the natural host, but the prevalence of this virus in feral macaques remains unknown. M-PMV was transmitted naturally by virus-containing body fluids, via biting, scratching, grooming, and fighting. Cross contaminated instruments or equipment (fomite) can also spread this virus among animals.

Human Endogenous Retrovirus-W (HERV-W) is a family of Human Endogenous Retroviruses (HERVs).

Bovine foamy virus (BFV) is a ss(+)RNA retrovirus that belongs to the genus spumaviridae. Spumaviruses differ from the other six members of family retroviridae, both structurally and in pathogenic nature. Spumaviruses derive their name from spuma the latin for "foam". The 'foam' aspect of 'foamy virus' comes from syncytium formation and the rapid vacuolization of infected cells, creating a 'foamy' appearance.

Feline foamy virus or Feline syncytial virus is a retrovirus and belongs to the family Retroviridae and the subfamily Spumaretrovirinae. It shares the genus Felispumavirus with only Puma feline foamy virus. There has been controversy on whether FeFV is nonpathogenic as the virus is generally asymptomatic in affected cats and does not cause disease. However, some changes in kidney and lung tissue have been observed over time in cats affected with FeFV, which may or may not be directly affiliated. This virus is fairly common and infection rates gradually increase with a cat's age. Study results from antibody examinations and PCR analysis have shown that over 70% of felines over 9 years old were seropositive for Feline foamy virus. Viral infections are similar between male and female domesticated cats whereas in the wild, more feral females cats are affected with FeFV.

Semotivirus is the only genus of viruses in the family Belpaoviridae. Species exist as retrotransposons in a eukaryotic host's genome. BEL/pao transposons are only found in animals. Semotivirus is the only genus currently recognized, the genus description corresponds to the family, Belpaoviridae description.

References

  1. "Virus Taxonomy: 2018b Release". International Committee on Taxonomy of Viruses (ICTV). March 2019. Retrieved 16 March 2019.
  2. "retrovirus". Oxford English Dictionary. Archived from the original on 26 September 2018. Retrieved 25 September 2018.
  3. 1 2 3 Carter JB, Saunders VA (2007). Virology: principles and applications (1st ed.). Chichester, England: John Wiley & Sons. p. 191. ISBN   978-0-470-02386-0. OCLC   124160564.
  4. Coffin JM, Hughes SH, Varmus HE, eds. (1997). Retroviruses. Cold Spring Harbor Laboratory. ISBN   978-0-87969-571-2.
  5. Miller, A. D. (2006). Retroviral Vectors in Gene Therapy. Encyclopedia of Life Sciences. doi : 10.1038/npg.els.0005741
  6. 1 2 Kurth R, Bannert N, eds. (2010). Retroviruses: Molecular Biology, Genomics and Pathogenesis. Horizon Scientific. ISBN   978-1-904455-55-4.
  7. Zheng, Jialu; Wei, Yutong; Han, Guan-Zhu (1 February 2022). "The diversity and evolution of retroviruses: Perspectives from viral "fossils"". Virologica Sinica. 37 (1): 11–18. doi:10.1016/j.virs.2022.01.019. ISSN   1995-820X. PMC   8922424 . PMID   35234634.
  8. Coffin, John M.; Hughes, Stephen H.; Varmus, Harold E. (1997). The Place of Retroviruses in Biology. Cold Spring Harbor Laboratory Press.
  9. Coffin JM (1992). "Structure and Classification of Retroviruses". In Levy JA (ed.). The Retroviridae. Vol. 1 (1st ed.). New York: Plenum. p. 20. ISBN   978-0-306-44074-8.
  10. 1 2 3 Painter, Mark M.; Collins, Kathleen L. (1 January 2019), "HIV and Retroviruses", in Schmidt, Thomas M. (ed.), Encyclopedia of Microbiology (Fourth Edition), Academic Press, pp. 613–628, doi:10.1016/b978-0-12-801238-3.66202-5, ISBN   978-0-12-811737-8, S2CID   188750910 , retrieved 3 May 2020
  11. Olson ED, Musier-Forsyth K (February 2019). "Retroviral Gag protein-RNA interactions: Implications for specific genomic RNA packaging and virion assembly". Seminars in Cell & Developmental Biology. SI: Human dendritic cells. 86: 129–139. doi:10.1016/j.semcdb.2018.03.015. PMC   6167211 . PMID   29580971.
  12. Coffin JM, Hughes SH, Varmus HE (1997). Virion Proteins. Cold Spring Harbor Laboratory Press. ISBN   978-0-87969-571-2.
  13. Coffin 1992 , pp. 26–34
  14. Kim FJ, Battini JL, Manel N, Sitbon M (January 2004). "Emergence of vertebrate retroviruses and envelope capture". Virology. 318 (1): 183–91. doi: 10.1016/j.virol.2003.09.026 . PMID   14972546.
  15. 1 2 Carter JB, Saunders VA (2007). Virology : principles and applications. Chichester, England: John Wiley & Sons. ISBN   978-0-470-02386-0. OCLC   124160564.
  16. Champoux JJ, Schultz SJ (June 2009). "RNase H Activity: Structure, Specificity, and Function in Reverse Transcription". The FEBS Journal. 134 (1–2): 86–103. doi:10.1016/j.virusres.2007.12.007. PMC   2464458 . PMID   18261820.
  17. Moelling K, Broecker F, Kerrigan JE (2014). "RNase H: specificity, mechanisms of action, and antiviral target". Human Retroviruses. Methods in Molecular Biology. Vol. 1087. pp. 71–84. doi:10.1007/978-1-62703-670-2_7. ISBN   978-1-62703-669-6. PMID   24158815.
  18. 1 2 Vargiu L, Rodriguez-Tomé P, Sperber GO, Cadeddu M, Grandi N, Blikstad V, et al. (January 2016). "Classification and characterization of human endogenous retroviruses; mosaic forms are common". Retrovirology. 13: 7. doi: 10.1186/s12977-015-0232-y . PMC   4724089 . PMID   26800882.
  19. Peters, P. J., Marston, B. J., Weidle, P. J., & Brooks, J. T. (2013). Human Immunodeficiency Virus Infection. Hunter's Tropical Medicine and Emerging Infectious Disease, 217–247. doi:10.1016/b978-1-4160-4390-4.00027-8
  20. Coffin JM, Hughes SH, Varmus HE (1997). "Genetic Organization". Retroviruses. Cold Spring Harbor Laboratory Press. ISBN   978-0-87969-571-2.
  21. Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J, Burt A, Tristem M (April 2004). "Long-term reinfection of the human genome by endogenous retroviruses". Proceedings of the National Academy of Sciences of the United States of America. 101 (14): 4894–9. Bibcode:2004PNAS..101.4894B. doi: 10.1073/pnas.0307800101 . PMC   387345 . PMID   15044706.
  22. Medstrand P, van de Lagemaat LN, Dunn CA, Landry JR, Svenback D, Mager DL (2005). "Impact of transposable elements on the evolution of mammalian gene regulation". Cytogenetic and Genome Research. 110 (1–4): 342–52. doi:10.1159/000084966. PMID   16093686. S2CID   25307890.
  23. Svarovskaia ES, Cheslock SR, Zhang WH, Hu WS, Pathak VK (January 2003). "Retroviral mutation rates and reverse transcriptase fidelity". Frontiers in Bioscience. 8 (1–3): d117–34. doi: 10.2741/957 . PMID   12456349.
  24. 1 2 Rawson JM, Nikolaitchik OA, Keele BF, Pathak VK, Hu WS (November 2018). "Recombination is required for efficient HIV-1 replication and the maintenance of viral genome integrity". Nucleic Acids Research. 46 (20): 10535–10545. doi:10.1093/nar/gky910. PMC   6237782 . PMID   30307534.
  25. Cromer D, Grimm AJ, Schlub TE, Mak J, Davenport MP (January 2016). "Estimating the in-vivo HIV template switching and recombination rate". AIDS. 30 (2): 185–92. doi: 10.1097/QAD.0000000000000936 . PMID   26691546. S2CID   20086739.
  26. Jolly C (March 2011). "Cell-to-cell transmission of retroviruses: Innate immunity and interferon-induced restriction factors". Virology. 411 (2): 251–9. doi:10.1016/j.virol.2010.12.031. PMC   3053447 . PMID   21247613.
  27. MacLachlan, N. James; Dubovi, Edward J. (2011). Fenner's Veterinary Virology (Fourth ed.). Academic Press. p. 250. ISBN   978-0-12-375159-1 . Retrieved 6 May 2020.
  28. Aiewsakun P, Katzourakis A (January 2017). "Marine origin of retroviruses in the early Palaeozoic Era". Nature Communications. 8: 13954. Bibcode:2017NatCo...813954A. doi:10.1038/ncomms13954. PMC   5512871 . PMID   28071651.
  29. Desport M, ed. (2010). Lentiviruses and Macrophages: Molecular and Cellular Interactions. Caister Academic. ISBN   978-1-904455-60-8.
  30. Ross, S. R. (2018). Cellular Immune Responses to Retroviruses. In Retrovirus-Cell Interactions (pp. 401–420). Elsevier. https://doi.org/10.1016/B978-0-12-811185-7.00011-X
  31. Burrell, C. J., Howard, C. R., & Murphy, F. A. (2017). Retroviruses. In Fenner and White's Medical Virology (pp. 317–344). Elsevier. https://doi.org/10.1016/b978-0-12-375156-0.00023-0
  32. ICTV Taxonomy Browser
  33. Lauber C, Seitz S, Mattei S, Suh A, Beck J, Herstein J, et al. (September 2017). "Deciphering the Origin and Evolution of Hepatitis B Viruses by Means of a Family of Non-enveloped Fish Viruses". Cell Host & Microbe. 22 (3): 387–399.e6. doi:10.1016/j.chom.2017.07.019. PMC   5604429 . PMID   28867387. and PDF
  34. Krupovic M, Blomberg J, Coffin JM, Dasgupta I, Fan H, Geering AD, et al. (June 2018). "Ortervirales: New Virus Order Unifying Five Families of Reverse-Transcribing Viruses". Journal of Virology. 92 (12). doi:10.1128/JVI.00515-18. PMC   5974489 . PMID   29618642.
  35. Fact-checking Judy Mikovits, the controversial virologist attacking Anthony Fauci in a viral conspiracy video, By Martin Enserink, Jon Cohen, May 8, 2020, accessed June 17, 2022, science.org website.
  36. Neil, Stuart J.D.; Campbell, Edward M. (2020). "Fake Science: XMRV, COVID-19, and the Toxic Legacy of Dr. Judy Mikovits". AIDS Research and Human Retroviruses. 36 (7): 545–549. doi:10.1089/aid.2020.0095. PMC   7398426 . PMID   32414291.
  37. Virus Conspiracists Elevate a New Champion, by Davey Alba, May 9, 2020, nytimes.com
  38. Rutherford GW, Sangani PR, Kennedy GE (2003). "Three- or four- versus two-drug antiretroviral maintenance regimens for HIV infection". The Cochrane Database of Systematic Reviews (4): CD002037. doi:10.1002/14651858.CD002037. PMID   14583945.
  39. Gingerich DA (2008). "Lymphocyte T-cell immunomodulator (LTCI): Review of the immunopharmacology of a new biologic" (PDF). International Journal of Applied Research in Veterinary Medicine. 6 (2): 61–68. ISSN   1559-470X.

Further reading