Semotivirus

Last updated
Semotivirus
Virus classification Red Pencil Icon.png
(unranked): Virus
Realm: Riboviria
Kingdom: Pararnavirae
Phylum: Artverviricota
Class: Revtraviricetes
Order: Ortervirales
Family: Belpaoviridae
Genus:Semotivirus
Species

See text

Semotivirus is the only genus of viruses in the family Belpaoviridae (formerly included in the family Metaviridae ). [1] Species exist as retrotransposons in a eukaryotic host's genome. BEL/pao transposons are only found in animals.

Contents

Species

Full-length genome architectures of representative semotiviruses. ORTR.Belpao.Fig1.v5-01.png
Full-length genome architectures of representative semotiviruses.

The genus contains the following species: [2]

Related Research Articles

Metaviridae is a family of viruses which exist as Ty3-gypsy LTR retrotransposons in a eukaryotic host's genome. They are closely related to retroviruses: members of the family Metaviridae share many genomic elements with retroviruses, including length, organization, and genes themselves. This includes genes that encode reverse transcriptase, integrase, and capsid proteins. The reverse transcriptase and integrase proteins are needed for the retrotransposon activity of the virus. In some cases, virus-like particles can be formed from capsid proteins.

Pseudoviridae is a family of viruses, which includes three genera.

Reverse-transcribing virus is a generic term, which may refer to any member of the families:

Piwi-interacting RNA (piRNA) is the largest class of small non-coding RNA molecules expressed in animal cells. piRNAs form RNA-protein complexes through interactions with piwi-subfamily Argonaute proteins. These piRNA complexes are mostly involved in the epigenetic and post-transcriptional silencing of transposable elements and other spurious or repeat-derived transcripts, but can also be involved in the regulation of other genetic elements in germ line cells.

mir-46/mir-47/mir-281 microRNA precursor family

In molecular biology, mir-46 and mir-47 are microRNA expressed in C. elegans from related hairpin precursor sequences. The predicted hairpin precursor sequences for Drosophila mir-281 are also related and, hence, belong to this family. The hairpin precursors are predicted based on base pairing and cross-species conservation; their extents are not known. In this case, the mature sequences are expressed from the 3' arms of the hairpin precursors.

<span class="mw-page-title-main">Animal testing on invertebrates</span> Overview article

Most animal testing involves invertebrates, especially Drosophila melanogaster, a fruit fly, and Caenorhabditis elegans, a nematode. These animals offer scientists many advantages over vertebrates, including their short life cycle, simple anatomy and the ease with which large numbers of individuals may be studied. Invertebrates are often cost-effective, as thousands of flies or nematodes can be housed in a single room.

SAND protein family, first described in Saccharomyces cerevisiae, is membrane protein related with vesicle traffic: vacuole fusion in yeasts and lysosome one motility in mammals and other taxa. In humans has been described an interaction with HSV-1, a virus which produces Herpes simplex.

<span class="mw-page-title-main">Nudivirus</span> Family of viruses

Nudiviruses are a family of animal viruses that constitute the family Nudiviridae. Insects and marine crustaceans serve as natural hosts. There are 11 species in this family, assigned to 4 genera. Diseases associated with this family include: death in larvae, chronic disease in adults.

<span class="mw-page-title-main">LTR retrotransposon</span> Class I transposable element

LTR retrotransposons are class I transposable element characterized by the presence of long terminal repeats (LTRs) directly flanking an internal coding region. As retrotransposons, they mobilize through reverse transcription of their mRNA and integration of the newly created cDNA into another location. Their mechanism of retrotransposition is shared with retroviruses, with the difference that most LTR-retrotransposons do not form infectious particles that leave the cells and therefore only replicate inside their genome of origin. Those that do (occasionally) form virus-like particles are classified under Ortervirales.

<span class="mw-page-title-main">Notch proteins</span>

Notch proteins are a family of type-1 transmembrane proteins that form a core component of the Notch signaling pathway, which is highly conserved in metazoans. The Notch extracellular domain mediates interactions with DSL family ligands, allowing it to participate in juxtacrine signaling. The Notch intracellular domain acts as a transcriptional activator when in complex with CSL family transcription factors. Members of this Type 1 transmembrane protein family share several core structures, including an extracellular domain consisting of multiple epidermal growth factor (EGF)-like repeats and an intracellular domain transcriptional activation domain (TAD). Notch family members operate in a variety of different tissues and play a role in a variety of developmental processes by controlling cell fate decisions. Much of what is known about Notch function comes from studies done in Caenorhabditis elegans (C.elegans) and Drosophila melanogaster. Human homologs have also been identified, but details of Notch function and interactions with its ligands are not well known in this context.

<span class="mw-page-title-main">DM domain</span> Protein family

In molecular biology the DM domain is a protein domain first discovered in the doublesex proteins of Drosophila melanogaster and is also seen in C. elegans and mammalian proteins. In D. melanogaster the doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. These proteins are believed to function as transcription factors on downstream sex-determination genes, especially on neuroblast differentiation and yolk protein genes transcription.

Host microbe interactions in <i>Caenorhabditis elegans</i>

Caenorhabditis elegans- microbe interactions are defined as any interaction that encompasses the association with microbes that temporarily or permanently live in or on the nematode C. elegans. The microbes can engage in a commensal, mutualistic or pathogenic interaction with the host. These include bacterial, viral, unicellular eukaryotic, and fungal interactions. In nature C. elegans harbours a diverse set of microbes. In contrast, C. elegans strains that are cultivated in laboratories for research purposes have lost the natural associated microbial communities and are commonly maintained on a single bacterial strain, Escherichia coli OP50. However, E. coli OP50 does not allow for reverse genetic screens because RNAi libraries have only been generated in strain HT115. This limits the ability to study bacterial effects on host phenotypes. The host microbe interactions of C. elegans are closely studied because of their orthologs in humans. Therefore, the better we understand the host interactions of C. elegans the better we can understand the host interactions within the human body.

Entomobirnavirus is a genus of viruses in the family Birnaviridae. Its natural host is the fly Drosophila melanogaster. There are two species in this genus.

Sigmavirus is a genus of viruses in the family Rhabdoviridae, order Mononegavirales. Sigmaviruses naturally infect dipterans.

Tc1/mariner is a class and superfamily of interspersed repeats DNA transposons. The elements of this class are found in all animals, including humans. They can also be found in protists and bacteria.

Metavirus is a genus of viruses in the family Metaviridae. They are retrotransposons that invade a eukaryotic host genome and may only replicate once the virus has infected the host. These genetic elements exist to infect and replicate in their host genome and are derived from ancestral elements unrelated from their host. Metavirus may use several different hosts for transmission, and has been found to be transmissible through ovule and pollen of some plants.

Caenorhabditis elegans Cer13 virus is a species of virus in the genus Semotivirus and the family Belpaoviridae. It exists as retrotransposons in the Caenorhabditis elegans genome.

Caenorhabditis elegans Cer1 virus is a species of retroviruses in the genus Metavirus.

<i>Ortervirales</i> Order of viruses

Ortervirales is an order that contains all accepted species of single-stranded RNA viruses that replicate through a DNA intermediate and all accepted species of double-stranded DNA viruses that replicate through an RNA intermediate . The name is derived from the reverse of retro.

<i>Ribozyviria</i> Realm of viruses

Ribozyviria is a realm of satellite nucleic acids. Established in ICTV TaxoProp 2020.012D, the realm is named after the presence of genomic and antigenomic ribozymes of the Deltavirus type. Additional common features include a rod-like structure, a RNA-binding "delta antigen" encoded in the genome, and animal hosts. Furthermore, the size range of the genomes of these viruses is between around 1547–1735nt, they encode a hammerhead ribozyme or a hepatitis delta virus ribozyme, and their coding capacity only involves one conserved protein. Most lineages of this realm are poorly understood, the notable exception being members of the genus Deltavirus, the causal agents of Hepatitis D in humans.

References

  1. Krupovic, M; Blomberg, J; Coffin, JM; Dasgupta, I; Fan, H; Geering, AD; Gifford, R; Harrach, B; Hull, R; Johnson, W; Kreuze, JF; Lindemann, D; Llorens, C; Lockhart, B; Mayer, J; Muller, E; Olszewski, N; Pappu, HR; Pooggin, M; Richert-Pöggeler, KR; Sabanadzovic, S; Sanfaçon, H; Schoelz, JE; Seal, S; Stavolone, L; Stoye, JP; Teycheney, PY; Tristem, M; Koonin, EV; Kuhn, JH (4 April 2018). "Ortervirales: A new viral order unifying five families of reverse-transcribing viruses". Journal of Virology. 92 (12). doi:10.1128/JVI.00515-18. PMC   5974489 . PMID   29618642.
  2. "Virus Taxonomy: 2020 Release". International Committee on Taxonomy of Viruses (ICTV). Retrieved 7 July 2021.