Mouse models of breast cancer metastasis

Last updated

Breast cancer metastatic mouse models are experimental approaches in which mice are genetically manipulated to develop a mammary tumor leading to distant focal lesions of mammary epithelium created by metastasis. Mammary cancers in mice can be caused by genetic mutations that have been identified in human cancer. This means models can be generated based upon molecular lesions consistent with the human disease.

Contents

Breast cancer metastasis

Metastasis is a process of migration of tumour cells from the primary cancer site to a distant location where the cancer cells form secondary tumors. Metastatic breast cancer represents the most devastating attribute of cancer and it is considered an advanced-stage event. [1] Human breast cancer metastasizes to multiple distant organs such as the brain, lungs, bones and liver.

Genetic diversity between primary and metastatic tumor

The classical theory developed in the early 70's anticipated that metastasis is due to genetically determined subpopulations in primary tumours. [2] The genetic variance between metastatic foci is significant for only particular locus and within specific cell populations or only one-cell population shows differences and some loci are divergent only in one cell subpopulation. This explains the concept of tumour heterogeneity and the order of genetic events during tumor evolution. Many of the genes driving the growth at primary site can determine the dissemination and colonization at the ectopic site. [3] [4] [5] Breast cancer is consensually considered genetically and clinically as a heterogeneous disease, in that it reflects the heterogeneity of the normal breast tissue at its origin17873350. [6] A number of discrete genetic events have to occur in order to enable individual tumor cells that have the capacity to grow at an ectopic site. The metastatic progression depends on the regulation of developmental programs and environmental events. [7] The metastatic potential of sub populations within mouse mammary cells is now considered as relatively an early event and dissemination occurs at the same time of pre invasive or micro-invasive lesions. [8] [9] The genetic profiles of primary and metastatic lesions in breast carcinomas show a large extent of clonal pertinence between lesions. [10] [11] There are various patterns of prevalence of genetic mutations in the genomes of primary breast tumour and its metastases. [12] [13] [14] It also confirms the genetic heterogeneity between the primary neoplasm of breast cancer patients and their respective metastases. [15] [16]

Genes involved in organ specific metastasis

Breast cancer phenotypes periodically express genes in metastasis that are indispensable for the metastatic process. Metastatic diversity is mediated by the activation of genes that act as coupling to organ-specific growth. [17] The growth of lesions at the ectopic site depends on multiple complex interactions between metastatic cells and host homeostatic mechanisms. Lethal protein-protein interactions at the metastatic site aid the survival of adapted cells. [18]

Generating mouse models of breast cancer

Targeted expression of oncogenes in mouse mammary epithelial cells is a way of modeling human breast cancer. Mutation or over expression of oncogenes can be kept under controlled expression in a very specific cellular context rather than throughout the organism. Another way to model human breast cancer is done through the targeted inhibition of a tumor suppressor gene. [19]

Mice in genetic research

Human and mouse: a genomic comparison

Genetic studies of common diseases in humans suffer significant limitations for practical and ethical reasons. [22] Human cell lines can be used to model disease but it is difficult to study processes at the tissue level, within an organ or across the entire body. Mice can be a good representation of diseases in humans because:. [23]

Mice may not be an ideal model for breast cancer. This is mainly due to the lack of precision in many of the models. When looking at metastasis, it is difficult to determine the precise location as well as its frequency. Another issue revolves around the epithelial sub types and the inability to specifically target them when targeting a mutation. An example of this would be determining the development of tumors in K14-Cre BRCA2 mice. In a standard case, the excision of BRCA2 resulted in no tumorgenesis, but if p53 was mutated and inactivated, tumorgenesis would occur. Therefore, there is not a definitive answer in terms of the origin of the tumor, due to the extra mutation in p53. [24]

Metastatic mouse mammary carcinoma cell lines

Various mouse mammary carcinoma cell lines, like 4T1 [25] and TS/A, are metastatic in syngeneic immunocompetent mice and can be used to identify genes and pathways involved in the metastatic process. [26]

Simple tumor transplantation models

Transplantation of tumor cells into immunodeficient mice is a tool to study breast cancer and its metastatic effects. The transplantation occurs as either allotransplants or xenographic transplants. [27] Commonly, human cells are inoculated in an immunocompromised murine recipient. Inoculating cells through intra ductal transplantations, [28] by cleared mammary fat pad injections [29] [30] or by transplantations into the tail vein. [31] [32] [33] Different organs can be seeded with breast cancer cells depending on the route of injection [34]

Tumor tissue transplant models

The specific immunodeficient mice that were used were the NOD/SCID mouse (non-obese diabetic/severe conditional immunodeficient). These mutations allow for the integration of new xenograft tissue. The mouse must first have their mammary fat pads humanized by injecting human telemorase-immortalized human mammary stromal fibroblasts(RMF/EG fibroblasts) into the mammary fat pads. Without this injection, the human mammary epithelial cells en-grafted onto the pad are unable to colonize and grow. The RMF/EG fibroblast must then be irradiated to allow the expression of key proteins and growth factors. After 4 weeks of development, the newly en-grafted human mammary epithelial cells expanded within the fat pad. [35]

Genetically engineered mice to study metastasis

Genetically engineered mice are constructed to model human phenotypes and pathologies. Mutant mice may include transgenes using different delivery methods:

Transgenic mouse models of breast cancer

The mice undergoing the process of transgenesis are known as transgenic mice. A basic transgene has a promoter region, Protein coding sequence, Intron and a stop codon. Mouse mammary tumor virus (MMTV), is a retro virus that has been a known promoter to cause breast tumors once activated. [39] MMTV is a heritable somatic mutagen whose target range is limited. It harbors a regulatory DNA sequence called the long terminal repeat (LTR), which promotes steroid-hormone-inducible transcription. [40] [41] Tumorgenesis that was induced by the mouse mammary tumor virus can also be done by integration of the viral genome. The sites of integration have been known to be critical genes for cellular regulation. [42] Whey acidic protein (WAP), [43] is another common promoter used to generate mouse mammary cancer models. For a list of other mammary gland specific promoters and mouse models see. [44]

Schematic representation of breast cancer metastatic study models Schematic representation of breast cancer metastatic study models.pdf
Schematic representation of breast cancer metastatic study models

MMTV-PyMT

MMTV-PyMT is the model of breast cancer metastasis, in which MMTV-LTR is used to drive the expression of mammary gland specific polyomavirus middle T-antigen, leading to a rapid development of highly metastatic tumors. [45] MMTV-PyMT is the most commonly used model for the study of mammary tumor progression and metastasis. MMTV-PyMT mice are then crossed bred with other genetically modified mice to generate various types of breast cancer models, including:

MMTV-HER2/neu

The MMTV-LTR can also be used to promote receptor tyrosine-protein kinase ErbB2 to transform the mouse mammary epithelium. ErbB2 is an oncogene amplified and overexpressed in around 20% of human breast cancers. The mice harbouring this oncogene develop multifocal adenocarcinomas with lung metastases at about 15 weeks after pregnancy. [54] [55] To create a more accurate representation of HER2 gene mutations, researchers have fused the mouse gene containing neu and a rat gene containing neu. This addresses the issue in terms of modeling the amplification of HER2 in mice development. In the non-fused mouse, the mammary gland would revert to a near virgin, but with this addition the mammary gland maintained the developed function. [56]

Bi-transgenic models

Mouse models having two transgenes are called bi transgenic. To check the cooperation of two oncogenes, Tim Stewert and group made the first bi-transgenic mouse models in 1987, MMTV-Myc and MMTV- Ras mice were crossed with a resulting acceleration in tumorigenesis. [57] Expression of TGFβ in the breast cancer cells of MMTV-ErbB2; MMTV-TGFβ double-transgenic mice can induce higher levels of circulating tumor cells and lung metastasis. [58] Ras gene can be combined with rtTA (reverse tetracycline transactivator) to generate bi-transgenic inducible mouse model through tetracycline-controlled transcriptional activation e.g. mice carrying TetO-KrasG12D (TOR) and MMTV-rtTA (MTB), comes with the transgene expressing the reverse tetracycline transactivator (rtTA) in mammary epithelial cells. [59]

Tri-transgenic models

Tri-transgenic mouse models constitute of more than two genes. Multiple combinations and genetic modifications are made in such a way that either one or all the genes are put into a continuously expressed status, or in a controlled fashion to activate them at different time points. For example, TOM( TetO-myc); TOR; MTB mice, where both the myc (M) and ras (R) genes are under the control of tetracycline operators. They can also both be activated or deactivated by adding doxycycline. Other combinations in this respect are TOM; Kras; MTB, where myc can be induced and uninduced at various time points while Kras is in continuous expressed state, and myc; TOR; MTB model is vice versa. [60]

Applications of genetically modified mice to study metastasis

Metastatic cascade can be studied by keeping the gene activation under control or by adding a reporter gene e.g. Beta actin GFP (Green fluorescent protein) or RFP (Red fluorescent protein).

Identification of genes that regulate metastasis

By knocking in/knocking out specific genes by homologous recombination, the extent of metastasis can be measured and new target genes identification can be achieved e.g. a gene that consistently regulates metastatic behavior of cancer cells is TGF-β1. Acute ablation of TGF-β signaling in MMTV-PyMT mammary tumor cells leads to a five-fold increase in lung metastasis. [61] Certain enhancer regions can also be analyzed and can be determined to be a crucial part of cell proliferation e.g. an enhancing region that is associated with a cancer critical gene p53 which was determined via CRISPR-Cas9. [62]

Lineage tracing in metastasis models

The quantitative lineage-tracing strategies have proven to be successful in resolving cell fates in normal epithelial tissues either using tissue –specific or stem-cell-specific transgenes. To conduct an inducible lineage-tracing experiment two components must be engineered into the mouse genome: a switch and a reporter. The switch is commonly a drug-regulated form of the bacterial enzyme Cre-recombinase. This enzyme recognizes specific sequences, called LoxP sites. [63] Proteins that are capable of enhancing the identification of labeled cells or a specific population in unlabelled cells are encoded by the reporter transgenes. After harvesting all the ten mouse mammary glands from the transgenic mice, single cell suspension is usually made and transplanted either in tail vein of non transgenic recipient mice [31] or in cleared fat pad of non-transgenic mice repopulating the mammary fat pad. [64] These cells are then followed in the blood stream, lungs, bone marrow and liver to look for the favorable site of metastasis.these transgenic cells can be traced according to their special features of either fluorescence or induced by placing the recipients on doxycycline food.[ citation needed ]

Circulating tumor cells

Another tool to study breast cancer metastasis is to look for circulating tumor cells in transgenic mice e.g. MMTV-PyMT mice can respond to various therapies in shedding tumor cells in the blood leading to lung metastasis. [65] Not only in blood but cells can be detected in bone marrow e.g. cytokeratin-positive cells in the bone marrow of MMTV-pyMT and MMTV-Neu transgenic mice were identified but not in the wild type controls. [66]

Limitations

In the absence of specific markers for mammary cells, models with genetic marking of tumor cells gives the best experimental advantage, however the low volume of peripheral blood that can be obtained from live animals limits the application of this technique.

In vivo imaging of metastatic mouse models

Transgenic mouse models can be imaged by various non-invasive techniques.

Bio luminescence Imaging Bio luminescence Imaging.pdf
Bio luminescence Imaging

Bioluminescence imaging

Bioluminescence imaging relies on the detection of light produced by the enzymatic oxidation of an exogenous substrate. The substrate luciferin, is oxidized to oxyluciferin in the presence of luciferase and emits light, which can be detected using an IVIS system such as a Xenogen machine. Dissociated mammary cells from MMTV-PyMT: IRES: Luc; MTB (Internal ribosome entry site: Luciferin) animals (which were not exposed to doxycycline) can be injected into the lateral tail veins of immunodeficient mice on a doxycycline-free diet. No bioluminescence signal will be observed in the lungs of recipient mice until they are given doxycycline food. Bioluminescence can then be detected in the chest within 2 weeks of the start of doxycycline exposure. [31] Luciferase is injected just before taking the images.

Fluorescent imaging

Intravital microscopy with multi photon excitation is a technique to visualize genetically engineered cells directly in vivo. Multi step metastatic cascades can be visualized by labelling with unique fluorescent colour under fluorescence microscope. [67] [68]

Radioisotopic imaging

Positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT) have been used to compare the efficiency of these in vivo imaging for detecting lesions at an early stage and to evaluate the response to chemotherapy. [69]

MRI Imaging

Magnetic resonance imaging requires the use of nano-particles(liposomes) and an MRI contrast agent called gadolinium. The particles were then placed in vesicles via a polycarbonate membrane filter. The nano-particles are injected into the metastases evolved mice, and left there for twenty-four hours. These mice are then scanned, and in the imaging software there are accumulations of these particles in certain areas where cells have metastasized. [22]

See also

Related Research Articles

<span class="mw-page-title-main">Metastasis</span> Spread of a disease inside a body

Metastasis is a pathogenic agent's spread from an initial or primary site to a different or secondary site within the host's body; the term is typically used when referring to metastasis by a cancerous tumor. The newly pathological sites, then, are metastases (mets). It is generally distinguished from cancer invasion, which is the direct extension and penetration by cancer cells into neighboring tissues.

Autocrine signaling is a form of cell signaling in which a cell secretes a hormone or chemical messenger that binds to autocrine receptors on that same cell, leading to changes in the cell. This can be contrasted with paracrine signaling, intracrine signaling, or classical endocrine signaling.

Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus like the HTL viruses, HI viruses, and BLV. It belongs to the genus Betaretrovirus. MMTV was formerly known as Bittner virus, and previously the "milk factor", referring to the extra-chromosomal vertical transmission of murine breast cancer by adoptive nursing, demonstrated in 1936, by John Joseph Bittner while working at the Jackson Laboratory in Bar Harbor, Maine. Bittner established the theory that a cancerous agent, or "milk factor", could be transmitted by cancerous mothers to young mice from a virus in their mother's milk. The majority of mammary tumors in mice are caused by mouse mammary tumor virus.

<span class="mw-page-title-main">Cancer stem cell</span> Cancer cells with features of normal cells

Cancer stem cells (CSCs) are cancer cells that possess characteristics associated with normal stem cells, specifically the ability to give rise to all cell types found in a particular cancer sample. CSCs are therefore tumorigenic (tumor-forming), perhaps in contrast to other non-tumorigenic cancer cells. CSCs may generate tumors through the stem cell processes of self-renewal and differentiation into multiple cell types. Such cells are hypothesized to persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors. Therefore, development of specific therapies targeted at CSCs holds hope for improvement of survival and quality of life of cancer patients, especially for patients with metastatic disease.

<span class="mw-page-title-main">BCL3</span> Protein-coding gene in the species Homo sapiens

B-cell lymphoma 3-encoded protein is a protein that in humans is encoded by the BCL3 gene.

<span class="mw-page-title-main">AGR2</span> Protein-coding gene in the species Homo sapiens

Anterior gradient protein 2 homolog (AGR-2), also known as secreted cement gland protein XAG-2 homolog, is a protein that in humans is encoded by the AGR2 gene. Anterior gradient homolog 2 was originally discovered in Xenopus laevis. In Xenopus AGR2 plays a role in cement gland differentiation, but in human cancer cell lines high levels of AGR2 correlate with downregulation of the p53 response, cell migration, and cell transformation. However, there have been other observations that AGR2 can repress growth and proliferation.

<span class="mw-page-title-main">MTA3</span> Protein-coding gene in the species Homo sapiens

Metastasis-associated protein MTA3 is a protein that in humans is encoded by the MTA3 gene. MTA3 protein localizes in the nucleus as well as in other cellular compartments MTA3 is a component of the nucleosome remodeling and deacetylate (NuRD) complex and participates in gene expression. The expression pattern of MTA3 is opposite to that of MTA1 and MTA2 during mammary gland tumorigenesis. However, MTA3 is also overexpressed in a variety of human cancers.

<span class="mw-page-title-main">LBH (gene)</span> Protein-coding gene in the species Homo sapiens

The LBH gene is a highly conserved human gene that produces the LBH protein, a transcription co-factor in the Wnt/β-catenin pathway. Upon transcriptional activation of β-catenin, LBH goes on to act as a regulator of cell proliferation and differentiation through multiple transcriptional targets. The gene is located on the p arm of chromosome 2 and is roughly 28 kb long. Current ongoing studies are examining its role in developmental and oncological settings.

<span class="mw-page-title-main">MTDH</span> Protein-coding gene in the species Homo sapiens

Metadherin, also known as protein LYRIC or astrocyte elevated gene-1 protein (AEG-1) is a protein that in humans is encoded by the MTDH gene.

<span class="mw-page-title-main">MMP8</span> Protein-coding gene in the species Homo sapiens

Neutrophil collagenase, also known as matrix metalloproteinase-8 (MMP-8) or PMNL collagenase (MNL-CL), is a collagen cleaving enzyme which is present in the connective tissue of most mammals. In humans, the MMP-8 protein is encoded by the MMP8 gene. The gene is part of a cluster of MMP genes which localize to chromosome 11q22.3. Most MMP's are secreted as inactive proproteins which are activated when cleaved by extracellular proteinases. However, the enzyme encoded by this gene is stored in secondary granules within neutrophils and is activated by autolytic cleavage.

mir-205 Micro RNA involved in the regulation of multiple genes

In molecular biology miR-205 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms. They are involved in numerous cellular processes, including development, proliferation, and apoptosis. Currently, it is believed that miRNAs elicit their effect by silencing the expression of target genes.

<span class="mw-page-title-main">Joan Massagué</span> Spanish biologist

Joan Massagué, is a Spanish biologist and the current director of the Sloan Kettering Institute at Memorial Sloan Kettering Cancer Center. He is also an internationally recognized leader in the study of both cancer metastasis and growth factors that regulate cell behavior, as well as a professor at the Weill Cornell Graduate School of Medical Sciences.

<span class="mw-page-title-main">Murine polyomavirus</span> Species of virus

Murine polyomavirus is an unenveloped double-stranded DNA virus of the polyomavirus family. The first member of the family discovered, it was originally identified by accident in the 1950s. A component of mouse leukemia extract capable of causing tumors, particularly in the parotid gland, in newborn mice was reported by Ludwik Gross in 1953 and identified as a virus by Sarah Stewart and Bernice Eddy at the National Cancer Institute, after whom it was once called "SE polyoma". Stewart and Eddy would go on to study related polyomaviruses such as SV40 that infect primates, including humans. These discoveries were widely reported at the time and formed the early stages of understanding of oncoviruses.

Patient derived xenografts (PDX) are models of cancer where the tissue or cells from a patient's tumor are implanted into an immunodeficient or humanized mouse. It is a form of xenotransplantation. PDX models are used to create an environment that allows for the continued growth of cancer after its removal from a patient. In this way, tumor growth can be monitored in the laboratory, including in response to potential therapeutic options. Cohorts of PDX models can be used to determine the therapeutic efficiency of a therapy against particular types of cancer, or a PDX model from a specific patient can be tested against a range of therapies in a 'personalized oncology' approach.

The middle tumor antigen is a protein encoded in the genomes of some polyomaviruses, which are small double-stranded DNA viruses. MTag is expressed early in the infectious cycle along with two other related proteins, the small tumor antigen and large tumor antigen. MTag occurs only in a few known polyomaviruses, while STag and LTag are universal - it was first identified in mouse polyomavirus (MPyV), the first polyomavirus discovered, and also occurs in hamster polyomavirus. In MPyV, MTag is an efficient oncoprotein that can be sufficient to induce neoplastic transformation in some cells.

<span class="mw-page-title-main">4T1</span>

4T1 is a breast cancer cell line derived from the mammary gland tissue of a mouse BALB/c strain. 4T1 cells are epithelial and are resistant to 6-thioguanine. In preclinical research, 4T1 cells have been used to study breast cancer metastasis as they can metastasize to the lung, liver, lymph nodes, brain and bone. The cells are known to be highly aggressive in live tissues.

The host response to cancer therapy is defined as a physiological response of the non-malignant cells of the body to a specific cancer therapy. The response is therapy-specific, occurring independently of cancer type or stage.

CUX1 is an animal gene. The name stands for Cut like homeobox 1. The term "cut" derives from the "cut wing" phenotype observed in a mutant of Drosophila melanogaster. In mammals, a CCAAT-displacement activity was originally described in DNA binding assays. The human gene was identified following purification of the CCAAT-displacement protein (CDP) and has been successively been called CDP, Cut-like 1 (CUTL1), CDP/Cut and finally, CUX1.. Cut homeobox genes are present in all metazoans. In mammals, CUX1 is expressed ubiquitously in all tissues. A second gene, called CUX2, is expressed primarily in neuronal cells.

Robert Cardiff is an American emeritus professor of pathology, educator, former chair of pathology at University of California, Davis, and scientist, best known for his contributions to biomedical research.

Human betaretrovirus (HBRV), also known as Human mammary tumor virus, or Mouse mammary tumor-like virus is the human homologue of the Mouse mammary tumor virus (MMTV). The nomenclature for Human betaretrovirus was introduced following characterization of infection in patient with autoimmune liver disease suggesting the virus is not solely found in mice nor exclusively implicated in the development of neoplastic disease. Evidence of HBRV has been documented in humans dating back at least 4500 years ago, and it stands as the only identified exogenous betaretrovirus affecting humans to date.

References

  1. Hanahan, D.; Weinberg, R. (2000). "The hallmarks of cancer". Cell. 100 (1): 57–70. doi: 10.1016/S0092-8674(00)81683-9 . PMID   10647931.
  2. Fidler, I. J. (1973). "Selection of successive tumour lines for metastasis". Nature New Biology. 242 (118): 148–9. doi:10.1038/newbio242148a0. PMID   4512654.
  3. Martins, F. C.; De, S; Almendro, V; Gönen, M; Park, S. Y.; Blum, J. L.; Herlihy, W; Ethington, G; Schnitt, S. J.; Tung, N; Garber, J. E.; Fetten, K; Michor, F; Polyak, K (2012). "Evolutionary pathways in BRCA1-associated breast tumors". Cancer Discovery. 2 (6): 503–11. doi:10.1158/2159-8290.CD-11-0325. PMC   3738298 . PMID   22628410.
  4. Shah, S. P.; Morin, R. D.; Khattra, J; Prentice, L; Pugh, T; Burleigh, A; Delaney, A; Gelmon, K; Guliany, R; Senz, J; Steidl, C; Holt, R. A.; Jones, S; Sun, M; Leung, G; Moore, R; Severson, T; Taylor, G. A.; Teschendorff, A. E.; Tse, K; Turashvili, G; Varhol, R; Warren, R. L.; Watson, P; Zhao, Y; Caldas, C; Huntsman, D; Hirst, M; Marra, M. A.; Aparicio, S (2009). "Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution". Nature. 461 (7265): 809–13. Bibcode:2009Natur.461..809S. doi: 10.1038/nature08489 . PMID   19812674.
  5. Geyer, F. C.; Weigelt, B; Natrajan, R; Lambros, M. B.; De Biase, D; Vatcheva, R; Savage, K; MacKay, A; Ashworth, A; Reis-Filho, J. S. (2010). "Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas". The Journal of Pathology. 220 (5): 562–73. doi: 10.1002/path.2675 . PMID   20099298.
  6. Ashkenazi, R; Jackson, T. L.; Dontu, G; Wicha, M. S. (2007). "Breast cancer stem cells-research opportunities utilizing mathematical modeling". Stem Cell Reviews. 3 (2): 176–82. doi:10.1007/s12015-007-0026-2. PMID   17873350. S2CID   22296676.
  7. Müller, A; Homey, B; Soto, H; Ge, N; Catron, D; Buchanan, M. E.; McClanahan, T; Murphy, E; Yuan, W; Wagner, S. N.; Barrera, J. L.; Mohar, A; Verástegui, E; Zlotnik, A (2001). "Involvement of chemokine receptors in breast cancer metastasis". Nature. 410 (6824): 50–6. Bibcode:2001Natur.410...50M. doi:10.1038/35065016. PMID   11242036. S2CID   4321110.
  8. Klein, C. A. (2009). "Parallel progression of primary tumours and metastases". Nature Reviews Cancer. 9 (4): 302–12. doi:10.1038/nrc2627. PMID   19308069. S2CID   9161392.
  9. Weng, D; Penzner, J. H.; Song, B; Koido, S; Calderwood, S. K.; Gong, J (2012). "Metastasis is an early event in mouse mammary carcinomas and is associated with cells bearing stem cell markers". Breast Cancer Research. 14 (1): R18. doi: 10.1186/bcr3102 . PMC   3496135 . PMID   22277639.
  10. Liu, W; Laitinen, S; Khan, S; Vihinen, M; Kowalski, J; Yu, G; Chen, L; Ewing, C. M.; Eisenberger, M. A.; Carducci, M. A.; Nelson, W. G.; Yegnasubramanian, S; Luo, J; Wang, Y; Xu, J; Isaacs, W. B.; Visakorpi, T; Bova, G. S. (2009). "Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer". Nature Medicine. 15 (5): 559–65. doi:10.1038/nm.1944. PMC   2839160 . PMID   19363497.
  11. Torres, L; Ribeiro, F. R.; Pandis, N; Andersen, J. A.; Heim, S; Teixeira, M. R. (2007). "Intratumor genomic heterogeneity in breast cancer with clonal divergence between primary carcinomas and lymph node metastases". Breast Cancer Research and Treatment. 102 (2): 143–55. doi:10.1007/s10549-006-9317-6. PMID   16906480. S2CID   33824409.
  12. Pandis, N; Teixeira, M. R.; Adeyinka, A; Rizou, H; Bardi, G; Mertens, F; Andersen, J. A.; Bondeson, L; Sfikas, K; Qvist, H; Apostolikas, N; Mitelman, F; Heim, S (1998). "Cytogenetic comparison of primary tumors and lymph node metastases in breast cancer patients". Genes, Chromosomes and Cancer. 22 (2): 122–9. doi:10.1002/(SICI)1098-2264(199806)22:2<122::AID-GCC6>3.0.CO;2-Z. PMID   9598799. S2CID   22599771.
  13. Kuukasjärvi, T; Karhu, R; Tanner, M; Kähkönen, M; Schäffer, A; Nupponen, N; Pennanen, S; Kallioniemi, A; Kallioniemi, O. P.; Isola, J (1997). "Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer". Cancer Research. 57 (8): 1597–604. PMID   9108466.
  14. Bonsing, B. A.; Corver, W. E.; Fleuren, G. J.; Cleton-Jansen, A. M.; Devilee, P; Cornelisse, C. J. (2000). "Allelotype analysis of flow-sorted breast cancer cells demonstrates genetically related diploid and aneuploid subpopulations in primary tumors and lymph node metastases". Genes, Chromosomes and Cancer. 28 (2): 173–83. doi:10.1002/(SICI)1098-2264(200006)28:2<173::AID-GCC6>3.0.CO;2-1. PMID   10825002. S2CID   36147250.
  15. Wu, J. M.; Fackler, M. J.; Halushka, M. K.; Molavi, D. W.; Taylor, M. E.; Teo, W. W.; Griffin, C; Fetting, J; Davidson, N. E.; De Marzo, A. M.; Hicks, J. L.; Chitale, D; Ladanyi, M; Sukumar, S; Argani, P (2008). "Heterogeneity of breast cancer metastases: Comparison of therapeutic target expression and promoter methylation between primary tumors and their multifocal metastases". Clinical Cancer Research. 14 (7): 1938–46. doi:10.1158/1078-0432.CCR-07-4082. PMC   2965068 . PMID   18381931.
  16. Schmidt-Kittler, O; Ragg, T; Daskalakis, A; Granzow, M; Ahr, A; Blankenstein, T. J.; Kaufmann, M; Diebold, J; Arnholdt, H; Muller, P; Bischoff, J; Harich, D; Schlimok, G; Riethmuller, G; Eils, R; Klein, C. A. (2003). "From latent disseminated cells to overt metastasis: Genetic analysis of systemic breast cancer progression". Proceedings of the National Academy of Sciences. 100 (13): 7737–42. Bibcode:2003PNAS..100.7737S. doi: 10.1073/pnas.1331931100 . PMC   164657 . PMID   12808139.
  17. Martín, B; Sanz, R; Aragüés, R; Oliva, B; Sierra, A (2008). "Functional clustering of metastasis proteins describes plastic adaptation resources of breast-cancer cells to new microenvironments". Journal of Proteome Research. 7 (8): 3242–53. doi:10.1021/pr800137w. PMID   18582095.
  18. Langley, R. R.; Fidler, I. J. (2007). "Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis". Endocrine Reviews. 28 (3): 297–321. doi: 10.1210/er.2006-0027 . PMID   17409287.
  19. Gupta, PB; Kuperwasser, C. (2004). Disease models of breast cancer. Drug Discovery Today: Disease Models 1(1), 9-16. doi: 10.1016/j.ddmod.2004.05.001
  20. Palmiter, R. D.; Brinster, R. L.; Hammer, R. E.; Trumbauer, M. E.; Rosenfeld, M. G.; Birnberg, N. C.; Evans, R. M. (1992). "Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. 1982". Biotechnology (Reading, Mass.). 24: 429–33. PMID   1422050.
  21. Nusse, R; Varmus, H. E. (1982). "Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome". Cell. 31 (1): 99–109. doi:10.1016/0092-8674(82)90409-3. PMID   6297757. S2CID   46024617.
  22. 1 2 Goldman, E; Zinger, A; Silva, DD; Yaari, Z; Vardi-Oknin, D; Goldfeder, M; Schroeder, JE; Shainsky-Roitman, J; Hershkovitz, D; Schroeder, A; (2017). Nanoparticles target early-stage breast cancer metastasis in vivo. Nanotechnology 28(43), 1-13. doi: 10.1086/13616528/aa8a3d
  23. Chinwalla, A. T.; Waterston, L. L.; Lindblad-Toh, K. D.; Birney, G. A.; Rogers, L. A.; Abril, R. S.; Agarwal, T. A.; Agarwala, L. W.; Ainscough, E. R.; Alexandersson, J. D.; An, T. L.; Antonarakis, W. E.; Attwood, J. O.; Baertsch, M. N.; Bailey, K. H.; Barlow, C. S.; Beck, T. C.; Berry, B.; Birren, J.; Bloom, E.; Bork, R. H.; Botcherby, M. C.; Bray, R. K.; Brent, S. P.; Brown, P.; Brown, E.; Bult, B.; Burton, T.; Butler, D. G.; et al. (2002). "Initial sequencing and comparative analysis of the mouse genome". Nature. 420 (6915): 520–562. Bibcode:2002Natur.420..520W. doi: 10.1038/nature01262 . PMID   12466850.
  24. Wagner, KW. (2003). Models of Breast Cancer: quo vadis, animal modeling? Breast Cancer Research 6(31), 31-38.doi: 10.1186/bcr723
  25. Pulaski BA, S Ostrand-Rosenberg. 2001. "Mouse 4T1 breast tumor model". Curr Protoc Immunol. Chapter 20:Unit 20.2. doi: 10.1002/0471142735.im2002s39
  26. Knott SRV, E Wagenblast, S Khan, SY Kim, M Soto, M Wagner, M-O Turgeon, L Fish, N Erard, AL Gable, AR Maceli, S Dickopf, EK Papachristou, CS D’Santos, LA Carey, JE Wilkinson, JC Harrell, CM Perou, H Goodarzi, G Poulogiannis, and GJ Hannon. 2018. "Asparagine bioavailability governs metastasis in a model of breast cancer". Nature. doi:10.1038/nature25465
  27. Khanna, C; Hunter, K (2005). "Modeling metastasis in vivo". Carcinogenesis. 26 (3): 513–23. doi: 10.1093/carcin/bgh261 . PMID   15358632.
  28. Behbod, F; Kittrell, F. S.; Lamarca, H; Edwards, D; Kerbawy, S; Heestand, J. C.; Young, E; Mukhopadhyay, P; Yeh, H. W.; Allred, D. C.; Hu, M; Polyak, K; Rosen, J. M.; Medina, D (2009). "An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ". Breast Cancer Research. 11 (5): R66. doi: 10.1186/bcr2358 . PMC   2790841 . PMID   19735549.
  29. Aslakson, C. J.; Miller, F. R. (1992). "Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor". Cancer Research. 52 (6): 1399–405. PMID   1540948.
  30. Yang, Jing; Mani, Sendurai A; Donaher, Joana Liu; Ramaswamy, Sridhar; Itzykson, Raphael A; Come, Christophe; Savagner, Pierre; Gitelman, Inna; Richardson, Andrea; Weinberg, Robert A (2004). "Twist, a Master Regulator of Morphogenesis, Plays an Essential Role in Tumor Metastasis". Cell. 117 (7): 927–39. doi: 10.1016/j.cell.2004.06.006 . PMID   15210113.
  31. 1 2 3 Podsypanina, K; Du, Y. C.; Jechlinger, M; Beverly, L. J.; Hambardzumyan, D; Varmus, H (2008). "Seeding and propagation of untransformed mouse mammary cells in the lung". Science. 321 (5897): 1841–4. Bibcode:2008Sci...321.1841P. doi:10.1126/science.1161621. PMC   2694414 . PMID   18755941.
  32. Talmadge, J. E.; Singh, R. K.; Fidler, I. J.; Raz, A (2007). "Murine models to evaluate novel and conventional therapeutic strategies for cancer". The American Journal of Pathology. 170 (3): 793–804. doi:10.2353/ajpath.2007.060929. PMC   1864878 . PMID   17322365.
  33. Kim, M. Y.; Oskarsson, T; Acharyya, S; Nguyen, D. X.; Zhang, X. H.; Norton, L; Massagué, J (2009). "Tumor self-seeding by circulating cancer cells". Cell. 139 (7): 1315–26. doi:10.1016/j.cell.2009.11.025. PMC   2810531 . PMID   20064377.
  34. Vargo-Gogola, T; Rosen, J. M. (2007). "Modelling breast cancer: One size does not fit all". Nature Reviews Cancer. 7 (9): 659–72. doi:10.1038/nrc2193. PMID   17721431. S2CID   44649920.
  35. Kuperwasser, C; Chavarria, T; Wu, M; Magrane, G; Gray, JW; Carey, L; Richardson, A; Weinberg, RA. (2004). Reconstruction of functionally normal and malignant human breast tissue in mice. Pnas 101(14), 4966-4971. doi: 10.1073/pnas.0401064101
  36. Gossen, M; Bujard, H (1992). "Tight control of gene expression in mammalian cells by tetracycline-responsive promoters". Proceedings of the National Academy of Sciences of the United States of America. 89 (12): 5547–51. Bibcode:1992PNAS...89.5547G. doi: 10.1073/pnas.89.12.5547 . PMC   49329 . PMID   1319065.
  37. Sauer, B; Henderson, N (1989). "Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome". Nucleic Acids Research. 17 (1): 147–61. doi:10.1093/nar/17.1.147. PMC   331541 . PMID   2783482.
  38. Du, Z; Podsypanina, K; Huang, S; McGrath, A; Toneff, M. J.; Bogoslovskaia, E; Zhang, X; Moraes, R. C.; Fluck, M; Allred, D. C.; Lewis, M. T.; Varmus, H. E.; Li, Y (2006). "Introduction of oncogenes into mammary glands in vivo with an avian retroviral vector initiates and promotes carcinogenesis in mouse models". Proceedings of the National Academy of Sciences. 103 (46): 17396–401. Bibcode:2006PNAS..10317396D. doi: 10.1073/pnas.0608607103 . PMC   1635021 . PMID   17090666.
  39. Callahan, R; Smith, G. H. (2000). "MMTV-induced mammary tumorigenesis: Gene discovery, progression to malignancy and cellular pathways". Oncogene. 19 (8): 992–1001. doi: 10.1038/sj.onc.1203276 . PMID   10713682.
  40. Ringold, G. M.; Yamamoto, K. R.; Tomkins, G. M.; Bishop, M; Varmus, H. E. (1975). "Dexamethasone-mediated induction of mouse mammary tumor virus RNA: A system for studying glucocorticoid action". Cell. 6 (3): 299–305. doi:10.1016/0092-8674(75)90181-6. PMID   212202. S2CID   20773799.
  41. Yamamoto, K. R.; Payvar, F; Firestone, G. L.; Maler, B. A.; Wrange, O; Carlstedt-Duke, J; Gustafsson, J. A.; Chandler, V. L. (1983). "Biological activity of cloned mammary tumor virus DNA fragments that bind purified glucocorticoid receptor protein in vitro". Cold Spring Harbor Symposia on Quantitative Biology. 47 (2): 977–84. doi:10.1101/sqb.1983.047.01.111. PMID   6305596.
  42. Ross, RS. (2010). Mouse mammary tumor virus molecular biology and oncogenesis. Viruses 2(9), 2000-2012. doi: 10.3390/v2092000
  43. Campbell, S. M.; Rosen, J. M.; Hennighausen, L. G.; Strech-Jurk, U; Sippel, A. E. (1984). "Comparison of the whey acidic protein genes of the rat and mouse". Nucleic Acids Research. 12 (22): 8685–97. doi:10.1093/nar/12.22.8685. PMC   320407 . PMID   6095207.
  44. Fantozzi, A; Christofori, G (2006). "Mouse models of breast cancer metastasis". Breast Cancer Research. 8 (4): 212. doi: 10.1186/bcr1530 . PMC   1779475 . PMID   16887003.
  45. Guy, C. T.; Cardiff, R. D.; Muller, W. J. (1992). "Induction of mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic disease". Molecular and Cellular Biology. 12 (3): 954–61. doi:10.1128/mcb.12.3.954. PMC   369527 . PMID   1312220.
  46. Klarenbeek, S; Van Miltenburg, M. H.; Jonkers, J (2013). "Genetically engineered mouse models of PI3K signaling in breast cancer". Molecular Oncology. 7 (2): 146–64. doi:10.1016/j.molonc.2013.02.003. PMC   5528412 . PMID   23478237.
  47. Lin, E. Y.; Nguyen, A. V.; Russell, R. G.; Pollard, J. W. (2001). "Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy". The Journal of Experimental Medicine. 193 (6): 727–40. doi:10.1084/jem.193.6.727. PMC   2193412 . PMID   11257139.
  48. Denardo, D. G.; Barreto, J. B.; Andreu, P; Vasquez, L; Tawfik, D; Kolhatkar, N; Coussens, L. M. (2009). "CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages". Cancer Cell. 16 (2): 91–102. doi:10.1016/j.ccr.2009.06.018. PMC   2778576 . PMID   19647220.
  49. Lopez, J. I.; Camenisch, T. D.; Stevens, M. V.; Sands, B. J.; McDonald, J; Schroeder, J. A. (2005). "CD44 attenuates metastatic invasion during breast cancer progression". Cancer Research. 65 (15): 6755–63. doi: 10.1158/0008-5472.CAN-05-0863 . PMID   16061657.
  50. Schoeffner, D. J.; Matheny, S. L.; Akahane, T; Factor, V; Berry, A; Merlino, G; Thorgeirsson, U. P. (2005). "VEGF contributes to mammary tumor growth in transgenic mice through paracrine and autocrine mechanisms". Laboratory Investigation. 85 (5): 608–23. doi: 10.1038/labinvest.3700258 . PMID   15765121.
  51. Muraoka-Cook, R. S.; Kurokawa, H; Koh, Y; Forbes, J. T.; Roebuck, L. R.; Barcellos-Hoff, M. H.; Moody, S. E.; Chodosh, L. A.; Arteaga, C. L. (2004). "Conditional overexpression of active transforming growth factor beta1 in vivo accelerates metastases of transgenic mammary tumors". Cancer Research. 64 (24): 9002–11. doi: 10.1158/0008-5472.CAN-04-2111 . PMID   15604265.
  52. Almholt, K; Lund, L. R.; Rygaard, J; Nielsen, B. S.; Danø, K; Rømer, J; Johnsen, M (2005). "Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice". International Journal of Cancer. 113 (4): 525–32. doi: 10.1002/ijc.20631 . PMID   15472905.
  53. Cuevas, B. D.; Winter-Vann, A. M.; Johnson, N. L.; Johnson, G. L. (2006). "MEKK1 controls matrix degradation and tumor cell dissemination during metastasis of polyoma middle-T driven mammary cancer". Oncogene. 25 (36): 4998–5010. doi: 10.1038/sj.onc.1209507 . PMID   16568086.
  54. Slamon, D. J.; Clark, G. M.; Wong, S. G.; Levin, W. J.; Ullrich, A; McGuire, W. L. (1987). "Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene". Science. 235 (4785): 177–82. Bibcode:1987Sci...235..177S. doi:10.1126/science.3798106. PMID   3798106.
  55. Muller, W. J.; Sinn, E; Pattengale, P. K.; Wallace, R; Leder, P (1988). "Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene". Cell. 54 (1): 105–15. doi:10.1016/0092-8674(88)90184-5. PMID   2898299. S2CID   33754359.
  56. Fry, EA; Taneka, P; Inoue, K. (2016). Oncogenic and tumor-suppressive mouse models for breast cancer engaging HER2/neu. International Journal of Cancer 140(3), 495-503. doi:10.1002/ijc.30399
  57. Sinn, E; Muller, W; Pattengale, P; Tepler, I; Wallace, R; Leder, P (1987). "Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: Synergistic action of oncogenes in vivo". Cell. 49 (4): 465–75. doi:10.1016/0092-8674(87)90449-1. PMID   3032456. S2CID   43820016.
  58. Siegel, P. M.; Shu, W; Cardiff, R. D.; Muller, W. J.; Massagué, J (2003). "Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis". Proceedings of the National Academy of Sciences. 100 (14): 8430–5. Bibcode:2003PNAS..100.8430S. doi: 10.1073/pnas.0932636100 . PMC   166246 . PMID   12808151.
  59. Gunther, E. J.; Belka, G. K.; Wertheim, G. B.; Wang, J; Hartman, J. L.; Boxer, R. B.; Chodosh, L. A. (2002). "A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology". The FASEB Journal. 16 (3): 283–92. doi: 10.1096/fj.01-0551com . PMID   11874978. S2CID   34303003.
  60. Podsypanina, K; Politi, K; Beverly, L. J.; Varmus, H. E. (2008). "Oncogene cooperation in tumor maintenance and tumor recurrence in mouse mammary tumors induced by Myc and mutant Kras". Proceedings of the National Academy of Sciences. 105 (13): 5242–7. Bibcode:2008PNAS..105.5242P. doi: 10.1073/pnas.0801197105 . PMC   2278195 . PMID   18356293.
  61. Bierie, B; Stover, D. G.; Abel, T. W.; Chytil, A; Gorska, A. E.; Aakre, M; Forrester, E; Yang, L; Wagner, K. U.; Moses, H. L. (2008). "Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment". Cancer Research. 68 (6): 1809–19. doi: 10.1158/0008-5472.CAN-07-5597 . PMID   18339861.
  62. Korkmaz, G; Lopes, R; Ugalde, AP; Nevedomskaya, E; Han, R; Myacheva, K; Zwart, W; Elkon, R; Agami, R. (2016). Functional genetics screens for enhancer elements in the human genome using CRISPR-Cas9. Nature Biotechnology 34, 192-198. doi: 10.1038/nbt.3450
  63. Srinivas, S; Watanabe, T; Lin, C. S.; William, C. M.; Tanabe, Y; Jessell, T. M.; Costantini, F (2001). "Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus". BMC Developmental Biology. 1: 4. doi: 10.1186/1471-213X-1-4 . PMC   31338 . PMID   11299042.
  64. Liao, M. J.; Zhang, C. C.; Zhou, B; Zimonjic, D. B.; Mani, S. A.; Kaba, M; Gifford, A; Reinhardt, F; Popescu, N. C.; Guo, W; Eaton, E. N.; Lodish, H. F.; Weinberg, R. A. (2007). "Enrichment of a population of mammary gland cells that form mammospheres and have in vivo repopulating activity". Cancer Research. 67 (17): 8131–8. doi: 10.1158/0008-5472.CAN-06-4493 . PMID   17804725.
  65. Biswas, S; Guix, M; Rinehart, C; Dugger, T. C.; Chytil, A; Moses, H. L.; Freeman, M. L.; Arteaga, C. L. (2007). "Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression". Journal of Clinical Investigation. 117 (5): 1305–13. doi:10.1172/JCI30740. PMC   1838926 . PMID   17415413.
  66. Hüsemann, Y; Geigl, J. B.; Schubert, F; Musiani, P; Meyer, M; Burghart, E; Forni, G; Eils, R; Fehm, T; Riethmüller, G; Klein, C. A. (2008). "Systemic spread is an early step in breast cancer". Cancer Cell. 13 (1): 58–68. doi: 10.1016/j.ccr.2007.12.003 . PMID   18167340.
  67. Egeblad, M; Nakasone, E. S.; Werb, Z (2010). "Tumors as organs: Complex tissues that interface with the entire organism". Developmental Cell. 18 (6): 884–901. doi:10.1016/j.devcel.2010.05.012. PMC   2905377 . PMID   20627072.
  68. Entenberg, D; Wyckoff, J; Gligorijevic, B; Roussos, E. T.; Verkhusha, V. V.; Pollard, J. W.; Condeelis, J (2011). "Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging". Nature Protocols. 6 (10): 1500–20. doi:10.1038/nprot.2011.376. PMC   4028841 . PMID   21959234.
  69. Alberini, Jean-Louis; Boisgard, Raphaël; Guillermet, Stéphanie; Siquier, Karine; Jego, Benoît; Thézé, Benoît; Urien, Saik; Rezaï, Keyvan; Menet, Emmanuelle (2016-08-01). "Multimodal In Vivo Imaging of Tumorigenesis and Response to Chemotherapy in a Transgenic Mouse Model of Mammary Cancer". Molecular Imaging and Biology. 18 (4): 617–626. doi:10.1007/s11307-015-0916-7. ISSN   1860-2002. PMC   4927598 . PMID   26630973.