Feline leukemia virus

Last updated

Feline leukemia virus
Feline leukemia virus.JPG
Electron micrograph of Feline leukemia virus
Virus classification OOjs UI icon edit-ltr.svg
(unranked): Virus
Realm: Riboviria
Kingdom: Pararnavirae
Phylum: Artverviricota
Class: Revtraviricetes
Order: Ortervirales
Family: Retroviridae
Genus: Gammaretrovirus
Species:
Feline leukemia virus
Synonyms [1]
  • Feline sarcoma and leukemia virus
  • Feline sarcoma virus

Feline leukemia virus (FeLV) is a retrovirus that infects cats. FeLV can be transmitted from infected cats when the transfer of saliva or nasal secretions is involved. If not defeated by the animal's immune system, the virus weakens the cat's immune system, which can lead to diseases which can be lethal. Because FeLV is cat-to-cat contagious, FeLV+ cats should only live with other FeLV+ cats.

Contents

FeLV is categorized into four subgroups, A, B, C and T. An infected cat has a combination of FeLV-A and one or more of the other subgroups. [2] [3] Symptoms, prognosis and treatment are all affected by subgroup. [2]

FeLV+ cats often have a shorter lifespan, but can still live "normal", healthy lives. [4]

Signs and symptoms

The signs and symptoms of infection with feline leukemia virus are quite varied and include loss of appetite, poor coat condition, anisocoria (uneven pupils), infections of the skin, bladder, and respiratory tract, oral disease, seizures, lymphadenopathy (swollen lymph nodes), skin lesions, fatigue, fever, weight loss, stomatitis, gingivitis, litter box avoidance, pancytopenia, recurring bacterial and viral illnesses, anemia, diarrhea and jaundice.[ citation needed ]

Asymptomatic carriers will show no signs of disease, often for many years.[ citation needed ]

Progression

The disease has a wide range of effects. The cat can fight off the infection and become totally immune, can become a healthy carrier that never gets sick itself but can infect other cats, or a mid-level case in which the cat has a compromised immune system.[ citation needed ] Nevertheless, the development of lymphomas is considered the final stage of the disease. Although it is thought that virus protein has to be present to induce lymphomas in cats, newer evidence shows that a high percentage of FeLV-Antigen negative lymphomas contain FeLV-DNA, indicating a "hit-and-run" mechanism of virus-induced tumor development. [5]

Once the virus has entered the cat, there are six stages to a FeLV infection[ citation needed ]:

If the cat's immune system does not fight off the virus, then it progresses to:[ citation needed ]

Transmission

Illustration of the potential outcomes following a cat's exposure to the FeLV infection Outcomes of infection with Feline Leukemia Virus (FeLV) diagram.svg
Illustration of the potential outcomes following a cat's exposure to the FeLV infection

Cats infected with FeLV can serve as sources of infection of FeLV-A. [3] Cats can pass the virus between themselves through saliva and close contact, by biting another cat, and (rarely) through a litter box or food dish used by an infected cat. [6]

Once a cat has been infected with FeLV-A, additional mutated forms of the original FeLV-A virus may arise, as may FeLV subgroups B, C and T.

In addition to domestic cats, some other members of Felidae are now threatened by FeLV (e.g. lynx and Florida panther). [3] Overwhelming epidemiologic evidence suggests FeLV is not transmissible to either humans [2] or dogs. [7]

Approximately 0.5% of pet cats are persistently infected with FeLV, but many more pet cats (>35%) have specific IgG antibodies which indicate prior exposure and subsequent development of immunity instead of infection. FeLV is highly infectious. [8] [9]

Kittens can be born with it, having contracted it from their mother while in utero. [6]

Infection is far higher in city cats, stray or owned, than in rural cats: this is entirely due to the amount of contact the cats have with each other. [10]

Diagnosis and prognosis

Testing for FeLV is possible with ELISA tests that look for viral antigens, free particles found in the bloodstream. These ELISA tests use blood samples most often, but can also use saliva or eye secretions. The sample is added to a container or dish that contains the antibodies to the viral antigens. If the antigens are present in the sample, the antibodies will bind to them and an indicator on the test will change color. These give a definitive diagnosis, but it cannot differentiate between acute or persistent infections. Therefore, it is recommended that the cat be retested in three to four months after the positive result to determine if the virus has been cleared from the body. Diagnosis can also be made by reference lab testing, using an immunofluorescence (IFA) test. The IFA test uses a blood sample and will detect the virus once it is in the bone marrow by detecting the virus's presence in white blood cells. IFA testing will not give positive results for transient, primary infections - the infection must be persistent to get a positive result on this test. Other than ELISA and IFA testing, routine laboratory blood work may show changes that indicate infection but cannot be used as a definitive diagnosis. There may be blood cell count changes like leukopenia, decreased Packed Cell Volume (PCV) and Total Protein (TP) levels due to anemia, hemoconcentration and hypoglycemia due to vomiting and diarrhea, electrolyte imbalance caused by dehydration and anorexia, and recurrent urinary tract infections. [11]

Cats diagnosed as persistently infected by ELISA testing may die within a few months or may remain asymptomatic for longer; median survival time after diagnosis is 2.5 years. [6]

FeLV is categorized into four subgroups. [2] [12]

The fatal diseases are leukemias, lymphomas, and non-regenerative anemias. Although there is no known cure for the virus infection, in 2006 the United States Department of Agriculture approved Lymphocyte T-Cell Immunomodulator as a treatment aid for FeLV (see Treatment).

In Canada, one feline infected with progressive Feline Leukemia Virus Type C and its Immune-Mediated Hemolytic Anemia complication has been successfully managed so far for over 6 months with the use of high-dose corticosteroids, broad-spectrum antibiotics to treat opportunistic and comorbid infections, antiviral medications, and immunomodulators such as cyclosporine after requiring multiple packed red blood cell transfusions to raise a critically low blood cell count.

Prevention

Three types of vaccines for FeLV are available: an adjuvanted killed virus noninfectious vaccine, an adjuvanted subunit vaccine, and a nonadjuvanted canarypox virus-vectored recombinant infectious vaccine (ATCvet code QI066AA01 and various combination vaccines), though no currently available vaccine offers 100% protection from the virus. [16] Vaccination is recommended for high-risk cats: those that have access to the outdoors, feral cats, cats that do not have the virus but live with an infected cat, multicat households, and cats with an unknown status, such as cats in catteries and shelters. [11]

Serious side effects have also been reported as a result of FeLV vaccination; in particular, a small percentage of cats who received the adjuvanted killed virus vaccine developed vaccine-associated sarcomas, an aggressive tumour, at the injection site. [17] The development of sarcomas with the use of the old FeLV and other vaccines may be due to the inflammation caused by aluminium adjuvants in the vaccines. [18]

Merial produces a recombinant vaccine consisting of canarypox virus carrying FeLV gag and env genes (sold as PUREVAX FeLV in the US and Eurifel FeLV in Europe). This is thought to be safer than the old vaccine as it does not require an adjuvant to be effective. Although this is a live virus, it originates from a bird host and so does not replicate in mammals. [19]

Viral structure

Feline leukemia virus (FeLV) is an RNA virus in the subfamily Oncovirinae belonging to the Retroviridae family. The virus comprises 5' and 3' LTRs and three genes: Gag (structural), Pol (enzymes) and Env (envelope and transmembrane); the total genome is about 9,600 base pairs.[ citation needed ]

See the entry on retroviruses for more details on the life cycle of FeLV.[ citation needed ]

Treatment

Approved US treatment

In 2006, the United States Department of Agriculture issued a conditional license for a new treatment aid termed Lymphocyte T-Cell Immunomodulator (LTCI). [20] Lymphocyte T-Cell Immunomodulator is manufactured and distributed exclusively by T-Cyte Therapeutics, Inc. [21]

Lymphocyte T-Cell Immunomodulator is intended as an aid in the treatment of cats infected with feline leukemia virus (FeLV) and/or feline immunodeficiency virus (FIV), and the associated symptoms of lymphocytopenia, opportunistic infection, anemia, granulocytopenia, or thrombocytopenia. The absence of any observed adverse events in several animal species suggests that the product has a very low toxicity profile.

Lymphocyte T-Cell Immunomodulator is a potent regulator of CD-4 lymphocyte production and function. [22] It has been shown to increase lymphocyte numbers and Interleukin 2 production in animals. [23]

Lymphocyte T-Cell Immunomodulator is a single chain polypeptide. It is a strongly cationic glycoprotein, and is purified with cation exchange resin. Purification of protein from bovine-derived stromal cell supernatants produces a substantially homogeneous factor, free of extraneous materials. The bovine protein is homologous with other mammalian species and is a homogeneous 50 kDa glycoprotein with an isoelectric point of 6.5. The protein is prepared in a lyophilized 1 microgram dose. Reconstitution in sterile diluent produces a solution for subcutaneous injection. [21]

Approved European treatment

Interferon-ω (omega) is sold in Europe at least under the name Virbagen Omega and manufactured by Virbac. When used in treatment of cats infected with FeLV in non-terminal clinical stages (over the age of 9 weeks) there have been substantial improvements in mortality rates; in non-anemic cats, mortality rate of 50% was reduced by approximately 20% following treatment. [24]

History

FeLV was first described in cats in 1964. [25] The disease was originally associated with leukemia; however, it was later realized that the initial signs are generally anemia and immunosuppression. [25] The first diagnostic test became available in 1973, which led to a "test and elimination" regime, dramatically reducing the number of infected cats in the general population. [26] The first vaccine became available in 1986. [26]

Comparison with feline immunodeficiency virus

FeLV and feline immunodeficiency virus (FIV) are sometimes mistaken for one another, though the viruses differ in many ways. Although they are both in the same retroviral subfamily (Orthoretrovirinae), they are classified in different genera (FeLV is a gamma-retrovirus and FIV is a lentivirus like HIV-1). Their shapes are quite different: FeLV is more circular while FIV is elongated. The two viruses are also quite different genetically, and their protein coats differ in size and composition. Although many of the diseases caused by FeLV and FIV are similar, the specific ways in which they are caused also differ. Also, while the feline leukemia virus may cause symptomatic illness in an infected cat, an FIV infected cat can remain completely asymptomatic its entire lifetime.[ citation needed ]

See also

Related Research Articles

Immunodeficiency, also known as immunocompromisation, is a state in which the immune system's ability to fight infectious diseases and cancer is compromised or entirely absent. Most cases are acquired ("secondary") due to extrinsic factors that affect the patient's immune system. Examples of these extrinsic factors include HIV infection and environmental factors, such as nutrition. Immunocompromisation may also be due to genetic diseases/flaws such as SCID.

<span class="mw-page-title-main">Feline immunodeficiency virus</span> Species of virus

Feline immunodeficiency virus (FIV) is a Lentivirus that affects cats worldwide, with 2.5% to 4.4% of felines being infected.

This is a list of AIDS-related topics, many of which were originally taken from the public domain U.S. Department of Health Glossary of HIV/AIDS-Related Terms, 4th Edition.

<i>Carnivore protoparvovirus 1</i> Species of parvovirus

Carnivore protoparvovirus 1 is a species of parvovirus that infects carnivorans. It causes a highly contagious disease in both dogs and cats separately. The disease is generally divided into two major genogroups: FPV containing the classical feline panleukopenia virus (FPLV), and CPV-2 containing the canine parvovirus type 2 (CPV-2) which appeared in the 1970s.

<span class="mw-page-title-main">Canine parvovirus</span> Contagious virus mainly affecting dogs

Canine parvovirus is a contagious virus mainly affecting dogs and wolves. CPV is highly contagious and is spread from dog to dog by direct or indirect contact with their feces. Vaccines can prevent this infection, but mortality can reach 91% in untreated cases. Treatment often involves veterinary hospitalization. Canine parvovirus often infects other mammals including foxes, wolves, cats, and skunks. Felines (cats) are also susceptible to panleukopenia, a different strain of parvovirus.

Lymphocytopenia is the condition of having an abnormally low level of lymphocytes in the blood. Lymphocytes are a white blood cell with important functions in the immune system. It is also called lymphopenia. The opposite is lymphocytosis, which refers to an excessive level of lymphocytes.

<span class="mw-page-title-main">Lymphoma in animals</span> Type of cancer in animals

Lymphoma (lymphosarcoma) in animals is a type of cancer defined by a proliferation of malignant lymphocytes within solid organs such as the lymph nodes, bone marrow, liver and spleen. The disease also may occur in the eye, skin, and gastrointestinal tract.

<span class="mw-page-title-main">Feline viral rhinotracheitis</span> Infectious disease of cats

Feline viral rhinotracheitis (FVR) is an upper respiratory or pulmonary infection of cats caused by Felid alphaherpesvirus 1 (FeHV-1), of the family Herpesviridae. It is also commonly referred to as feline influenza, feline coryza, and feline pneumonia but, as these terms describe other very distinct collections of respiratory symptoms, they are misnomers for the condition. Viral respiratory diseases in cats can be serious, especially in catteries and kennels. Causing one-half of the respiratory diseases in cats, FVR is the most important of these diseases and is found worldwide. The other important cause of feline respiratory disease is feline calicivirus.

<i>Feline calicivirus</i> Species of virus

Feline calicivirus (FCV) is a virus of the family Caliciviridae that causes disease in cats. It is one of the two important viral causes of respiratory infection in cats, the other being Felid alphaherpesvirus 1. FCV can be isolated from about 50% of cats with upper respiratory infections. Cheetahs are the other species of the family Felidae known to become infected naturally.

Cancer in cats is the leading cause of death among cats. It is caused by uncontrolled cell growth, and affects a wide range of cell types and organs in the body. Feline cancer initially manifests as a lump or bump on any parts of the body. It rapidly grows in the affected cell, attaches itself to the tissue under the skin in that area, and, depending on the tumour, it can spread to other parts of the body. Although cancer accounts for approximately 32% of deaths in cats over ten years old, it can be successfully treated if diagnosed early.

Lymphocyte T-cell immunomodulator (LTCI) is an immune regulating polypeptide, which is a potent regulator of CD-4 lymphocyte production and function. It increases lymphocyte numbers and interleukin-2 (IL-2) production in animals. It is extracted from bovine thymus.

<span class="mw-page-title-main">Cat health</span> Health of domestic cats

The health of domestic cats is a well studied area in veterinary medicine.

Feline vaccination is animal vaccination applied to cats. Vaccination plays a vital role in protecting cats from infectious diseases, some of which are potentially fatal. They can be exposed to these diseases from their environment, other pets, or even humans.

Feline infectious anemia (FIA) is an infectious disease found in felines, causing anemia and other symptoms. The disease is caused by a variety of infectious agents, most commonly Mycoplasma haemofelis.

<i>Mycoplasma haemofelis</i> Parasitic bacterium

Mycoplasma haemofelis is a gram-negative epierythrocytic parasitic bacterium. It often appears in bloodsmears as small (0.6μm) coccoid bodies, sometimes forming short chains of three to eight organisms. It is usually the causative agent of feline infectious anemia (FIA) in the United States.

SAV001-H is the first candidate preventive HIV vaccine using a killed or "dead" version of the HIV-1 virus.

William "Bill" Fleming Hoggan Jarrett, RCVS, FRCPath, FRCPG, FRS (1928–2011) was a British pathologist.

Feline foamy virus or Feline syncytial virus is a retrovirus and belongs to the family Retroviridae and the subfamily Spumaretrovirinae. It shares the genus Felispumavirus with only Puma feline foamy virus. There has been controversy on whether FeFV is nonpathogenic as the virus is generally asymptomatic in affected cats and does not cause disease. However, some changes in kidney and lung tissue have been observed over time in cats affected with FeFV, which may or may not be directly affiliated. This virus is fairly common and infection rates gradually increase with a cat's age. Study results from antibody examinations and PCR analysis have shown that over 70% of felines over 9 years old were seropositive for Feline foamy virus. Viral infections are similar between male and female domesticated cats whereas in the wild, more feral females cats are affected with FeFV.

Gibbon-ape leukemia virus (GaLV) is an oncogenic, type C retrovirus that has been isolated from primate neoplasms, including the white-handed gibbon and woolly monkey. The virus was identified as the etiological agent of hematopoietic neoplasms, leukemias, and immune deficiencies within gibbons in 1971, during the epidemic of the late 1960s and early 1970s. Epidemiological research into the origins of GaLV has developed two hypotheses for the virus' emergence. These include cross-species transmission of the retrovirus present within a species of East Asian rodent or bat, and the inoculation or blood transfusion of a MbRV-related virus into captured gibbons populations housed at medical research institutions. The virus was subsequently identified in captive gibbon populations in Thailand, the US and Bermuda.

Recombinant feline interferon omega (RFeIFN-ω), sold under the brand name Virbagen Omega among others, is a recombinant version of a cat interferon alpha. It is used to treat a range of viral diseases in cats and dogs, including canine parvovirus, feline leukemia virus (FeLV), and feline immunodeficiency virus (FIV) in many countries. It is approved to be used by injection under the skin. RFeIFN-ω is produced in silkworm larvae using a baculovirus vector.

References

  1. "ICTV Taxonomy history: Feline leukemia virus". International Committee on Taxonomy of Viruses (ICTV). Retrieved January 8, 2019.
  2. 1 2 3 4 5 "Feline Leukemia Virus and Related Diseases in Cats - Overview - Generalized Conditions - Merck Veterinary Manual". Merck Veterinary Manual. Retrieved May 21, 2018.
  3. 1 2 3 "Feline leukemia virus inhibits thiamine uptake, with pathological consequences". Fred Hutch. Archived from the original on May 22, 2018. Retrieved May 21, 2018.
  4. "Feline Leukemia FAQs". Austin Pets Alive!.
  5. Weiss AT, Klopfleisch R, Gruber AD (2010). "Prevalence of feline leukaemia provirus DNA in feline lymphomas". J Feline Med Surg. 12 (12): 929–35. doi:10.1016/j.jfms.2010.07.006. PMC   11135535 . PMID   21036089. S2CID   5397336.
  6. 1 2 3 "Feline Leukemia Virus". Cornell University College of Veterinary Medicine. October 11, 2017. Retrieved May 21, 2018.
  7. "Feline leukemia virus (FeLV)". American Animal Hospital Association. Archived from the original on August 15, 2015. Retrieved May 21, 2018.
  8. Phipps, A. J.; Chen, H; Hayes, K. A.; Roy-Burman, P; Mathes, L. E. (2000). "Differential Pathogenicity of Two Feline Leukemia Virus Subgroup a Molecular Clones, pFRA and pF6A". Journal of Virology. 74 (13): 5796–5801. doi:10.1128/jvi.74.13.5796-5801.2000. PMC   112073 . PMID   10846058.
  9. Vobis, M.; d'Haese, J.; Mehlhorn, H.; Mencke, N. (2003). "Evidence of horizontal transmission of feline leukemia virus by the cat flea (Ctenocephalides felis)". Parasitology Research. 91 (6): 467–470. doi:10.1007/s00436-003-0949-8. PMID   14557874. S2CID   23898163.
  10. "Feline Leukemia Virus (FeLV)". Alley Cat Allies. Retrieved May 21, 2018.
  11. 1 2 Johnson, A. (2014). Small Animal Pathology for Veterinarian Technicians. Hoboken: Wiley Blackwell.
  12. 1 2 3 4 Greggs WM, 3rd; Clouser, CL; Patterson, SE; Mansky, LM (2011). "Broadening the use of antiretroviral therapy: the case for feline leukemia virus". Therapeutics and Clinical Risk Management. 7: 115–22. doi: 10.2147/TCRM.S17731 . PMC   3071348 . PMID   21479142.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  13. 1 2 "Feline Leukemia Virus (FeLV) - Symptoms & Treatment | petMD | petMD". www.petmd.com. Retrieved May 21, 2018.
  14. Stewart, H; Jarrett, O; Hosie, MJ; Willett, BJ (January 2013). "Complete genome sequences of two feline leukemia virus subgroup B isolates with novel recombination sites". Genome Announcements. 1 (1). doi:10.1128/genomeA.00036-12. PMC   3569371 . PMID   23405366.
  15. 1 2 "Feline Leukemia Virus (FeLV) Overview, Types of FeLV - Feline Leukemia Virus (FeLV) - HealthCommunities.com". www.healthcommunities.com. Archived from the original on December 18, 2019. Retrieved May 21, 2018.
  16. "Feline Leukemia Virus: A Cause of Immunodeficiency in Cats".
  17. "Feline Leukemia Virus Diseases". Archived from the original on December 10, 2007. Retrieved December 9, 2007.
  18. Richards J, Elston T, Ford R, Gaskell R, Hartmann K, Hurley K, Lappin M, Levy J, Rodan I, Scherk M, Schultz R, Sparkes A (2006). "The 2006 American Association of Feline Practitioners Feline Vaccine Advisory Panel report". J Am Vet Med Assoc. 229 (9): 1405–41. doi: 10.2460/javma.229.9.1405 . PMID   17078805.
  19. Poulet H, Brunet S, Boularand C, Guiot AL, Leroy V, Tartaglia J, Minke J, Audonnet JC, Desmettre P (2003). "Efficacy of a canarypox virus-vectored vaccine against feline leukaemia". The Veterinary Record. 153 (5): 141–5. doi:10.1136/vr.153.5.141. PMID   12934796. S2CID   41343372.
  20. "LTCI Product Information". T-Cyte Therapeutics, Inc. Archived from the original on August 16, 2012. Retrieved July 28, 2012.
  21. 1 2 "T-Cyte Therapeutics, Inc". T-Cyte Therapeutics, Inc. Retrieved July 28, 2012.
  22. Beardsley, et al. "Induction of T-Cell Maturation by a Cloned Line of Thymic Epithelium (TEPI) Immunology 80: pp. 6005-6009, (Oct. 1983).
  23. Beardsley, Terry R. Patent # 7,196,060; Method to enhance hematopoiesis. Method to enhance hematopoiesis – Google Patents [ dead link ] at www.google.com
  24. "Virbagen Omega". European Medicines Agency. March 8, 2007.
  25. 1 2 Hartmann, Katrin (2013). "Chapter 11: Feline leukemia virus infection". In Greene, Craig E. (ed.). Infectious diseases of the dog and cat (4 ed.). Elsevier Health Sciences. ISBN   9780323266215.
  26. 1 2 Louwerens, M; London, CA; Pedersen, NC; Lyons, LA (2005). "Feline lymphoma in the post-feline leukemia virus era". Journal of Veterinary Internal Medicine. 19 (3): 329–35. doi: 10.1111/j.1939-1676.2005.tb02703.x . PMID   15954547.