Stromal cells, or mesenchymal stromal cells, are differentiating cells found in abundance within bone marrow but can also be seen all around the body. Stromal cells can become connective tissue cells of any organ, for example in the uterine mucosa (endometrium), prostate, bone marrow, lymph node and the ovary. They are cells that support the function of the parenchymal cells of that organ. The most common stromal cells include fibroblasts and pericytes. The term stromal comes from Latin stromat-, "bed covering", and Ancient Greek στρῶμα , strôma, "bed".
Stromal cells are an important part of the body's immune response and modulate inflammation through multiple pathways. They also aid in differentiation of hematopoietic cells and forming necessary blood elements. The interaction between stromal cells and tumor cells is known to play a major role in cancer growth and progression. [1] In addition, by regulating local cytokine networks (e.g. M-CSF, [2] LIF [3] ), bone marrow stromal cells have been described to be involved in human hematopoiesis and inflammatory processes.
Stromal cells (in the dermis layer) adjacent to the epidermis (the top layer of the skin) release growth factors that promote cell division. This keeps the epidermis regenerating from the bottom while the top layer of cells on the epidermis are constantly being "sloughed" off the body. Additionally, stromal cells play a role in inflammation responses, and controlling the amount of cells accumulating at an inflamed region of tissue. [4]
Defining a stromal cell is of importance because it was a source of difficulty in the past. Without a strong definition studies could not cross over or gain knowledge from each other because a stromal cell was not well defined and went by a plethora of names. A stromal cell is currently more specifically referred to as a mesenchymal stromal cell (MSC). It is non-hematopoietic, multipotent, and self-replicating. [5] These factors make it an effective tool in potential cell therapies and tissue repair. Being a mesenchymal cell indicates an ability to develop into various other cell types and tissues such as connective tissue, blood vessels, and lymphatic tissue. [5] Some stromal cells can be considered stem cells but not all therefore it can not be broadly termed a stem cell. All MSCs have the ability adhere to plastic and replicate by themselves. The minimal criteria to define MSCs further include a specific set of cell surface markers. The cells must express CD73, CD90 and CD105 and they must be negative for CD14 or CD11b, CD34, CD45, CD79 alpha or CD19 and HLA-DR. [6] Low levels of human leukocyte antigen (HLA-DR) make MSCs hypoimmunogenic. [7] MSCs have trilineage differentiation capacity where they are able to adapt into osteoblast, chondrocytes, and adipocytes. [5] They can also display anti-inflammatory as well as proinflammatory responses allowing for the potential to help with a broad range of immune disorders and inflammatory diseases.
It is well known that stromal cells arise and are stored in the bone marrow until maturation and differentiation. They are located in the stroma and aid hematopoietic cells in forming the elements of the blood. [8] While a majority is found in the bone marrow scientists now know that stromal cells can be found in a variety of different tissues as well. These can include adipose tissue, endometrium, synovial fluid, dental tissue, amniotic membrane and fluid, as well as the placenta. High quality stromal cells are located in the placenta, due to their young age. [8] MSCs lose function with age, and aged MSCs are less efficacious in therapy.
During normal wound healing processes, the local stromal cells change into reactive stroma after altering their phenotype. However, under certain conditions, tumor cells can convert these reactive stromal cells further and transition them into tumor-associated stromal cells (TASCs). [9] In comparison to non-reactive stromal cells, TASCs secrete increased levels of proteins and matrix metalloproteinases (MMPs). These proteins include fibroblast activating protein and alpha-smooth muscle actin. Furthermore, TASCs secrete many pro-tumorigenic factors such as vascular endothelial growth factor (VEGF), stromal-derived factor-1 alpha, IL-6, IL-8, tenascin-C, and others. These factors are known to recruit additional tumor and pro-tumorigenic cells. The cross-talk between the host stroma and tumor cells is essential for tumor growth and progression. Tumor stromal production exhibits similar qualities as normal wound repair such as new blood vessel formation, immune cell and fibroblast infiltration, and considerable remodeling of the extracellular matrix.
Additionally, the recruitment of local normal host stromal cells, such as bone marrow mesenchymal stromal cells, endothelial cells, and adipocytes, help create a conspicuously heterogeneous composition. [9] Furthermore, these cells secrete an abundance of factors that help regulate tumor development. Potential targets for tumor-associated stromal cell recruitment have been identified in the following host tissue: bone marrow, connective tissue, adipose tissue, and blood vessels. Moreover, evidence suggests that tumor-associated stroma are a prerequisite for metastasis and tumor cell invasion. These are known to arise from at least six different origins: immune cells, macrophages, adipocytes, fibroblasts, pericytes, and bone marrow mesenchymal stromal cells. [9] Furthermore, the tumor stroma is primarily composed of the basement membrane, fibroblasts, extracellular matrix, immune cells, and blood vessels. Typically, most host cells in the stroma are characterized by tumor-suppressive abilities. However, during malignancy, the stroma will undergo alterations to consequently incite growth, invasion, and metastasis. These changes include the formation of carcinoma-associated fibroblasts (CAFs) which comprises a major portion of the reactive tissue stroma and plays a critical role in regulating tumor progression. [10]
Certain types of skin cancers (basal cell carcinomas) cannot spread throughout the body because the cancer cells require nearby stromal cells to continue their division. The loss of these stromal growth factors when the cancer moves throughout the body prevents the cancer from invading other organs.
Stroma is made up of the non-malignant cells, but can provide an extracellular matrix on which tumor cells can grow. Stromal cells may also limit T-cell proliferation via nitric oxide production, hindering immune capability. [11]
An important property of MSCs is their ability to suppress an excessive immune response. T-cells, B-cells, dendritic cells, macrophages, and natural killer cells can be overstimulated during an ongoing immune response, but stromal cells help to keep the balance and make sure the body can properly heal without an excessive amount of inflammation. Thereby, they also help prevent autoimmunity.
MSCs can affect cells of the adaptive immune system as well as cells of the innate immune system. For example, they can inhibit the proliferation and activity of T-cells [12] When there is a high level of MSCs during an immune response the generation of more B-cells is stunted. The B-cells that can still be produced are impacted by diminished antibody count production and chemotactic behavior. [7] Dendritic cells in the presence of MSC's are immature and undifferentiated which causes impaired function to call upon T-cells and bridge the gap between the innate and adaptive immune responses. [13] These dendritic cells instead release cytokines in order to regulate the growth and activity of other immune system cells as well as blood cells. [14] Furthermore, MSCs can polarize macrophages towards a more immunosuppressive M2 phenotype. [15] The mechanisms through which MSCs affect cells of the immune system can be contact-dependent or mediated by secreted substances. An example for a contact-dependent mechanism is the expression of programmed death-ligand 1 (PD-L1), through which MSCs can suppress T cells. [16] [17] The secreted substances MSCs release an inflammatory response is stimulated include for example nitric oxide (NO), indoleamine 2,3-dioxygenase (IDO), prostaglandin E2 (PGE2), programmed death-ligand 1 (PD-L1) and many more. [5] Inflammatory cytokines like IFN-gamma can stimulate the expression of these immunoregulatory mediators like IDO. IDO catalyzes the conversion of tryptophan into kynurenine inhibiting T cell proliferation and activity by tryptophan depletion and by kynurenine-mediated suppression. [5]
Stromal cells are most often looked at for their hypoimmunogenic response but they are actually non specific immunomodulating. MSCs can flip the switch between anti-inflammatory and pro-inflammatory based on their levels of IFN-gamma, TNF-alpha, and either +IL-6 or -IL-6. [18] Pathogens are initially recognized by toll-like receptors (TLR's). This triggers inflammatory mediators and activates either pro- or anti-inflammatory MSCs. [19] If IFN-gamma and TNF-alpha are present in high levels the MSCs will stimulate an anti-inflammatory response by activating CD4, CD25, FoxP3, and Treg cell instead of cytotoxic T-cells. However, if the levels of IFN-gamma and TNF-alpha are low the MSCs produce low levels of IDO and therefore can activate T-cells normally and the inflammation process takes place. [18] MSCs with +IL-6 in the presence of monocytes induce M2-macrophages and CCL-18 which inhibits T-cells from being activated. However, MSCs with -IL-6 in the presence of monocytes induce M1-macrophages and can activate T-cells and produce high levels of IFN-gamma and TNF-alpha which regulates the inflammation through the previously mentioned mechanism. [18]
Before differentiation a majority of MSCs are housed within the bone marrow which is also where lymphocytes and other blood elements are formed. Stromal cells play a large role in the distinction of hematopoietic cells (cells that can differentiate into other blood cells). [20] MSCs act as a physical support for differentiating hematopoietic cells in conjunction with the extracellular matrix. Stromal cells also provide nutrients and growth factors for the hematopoietic cell to continue to develop. Lastly, MSCs express adhesion molecules that influence the hematopoietic cells differentiation. [20] The body tells the MSCs what blood elements are needed and it conveys those adhesion molecules to the differentiating cell. [21]
MSCs have the potential to be used in multiple disease interventions. One important feature of MSCs is that they can go virtually undetected by the immune system. The stromal cells possess serine proteases which are an inhibitor of the immune response. They also do not carry receptors that relate to the immune system or are not in high enough concentrations to admit a response. [22] This is helpful for the future of MSC cell therapies because there will be little to no negative effects from a possible immune response. There is promising research in the fields of autoimmune disorders such as multiple sclerosis and rheumatoid arthritis as well as wound healing, COPD, and even acute respiratory distress syndrome [23] (an effect of COVID-19). Stromal cells have the unique ability to create an immune modulated environment in order to best respond to foreign and known particles. [24] The reason for halted use of MSCs is the lack of knowledge of the cells in vivo. Most research of these cells have been done in controlled laboratory environments which can sometimes alter the effects seen. [25] The potentials, however, for cell therapy in tissue repair, immune modulation, and anti-tumor agent distribution are promising. [25]
A growth factor is a naturally occurring substance capable of stimulating cell proliferation, wound healing, and occasionally cellular differentiation. Usually it is a secreted protein or a steroid hormone. Growth factors are important for regulating a variety of cellular processes.
Macrophages are a type of white blood cell of the innate immune system that engulf and digest pathogens, such as cancer cells, microbes, cellular debris, and foreign substances, which do not have proteins that are specific to healthy body cells on their surface. This process is called phagocytosis, which acts to defend the host against infection and injury.
Bone marrow is a semi-solid tissue found within the spongy portions of bones. In birds and mammals, bone marrow is the primary site of new blood cell production. It is composed of hematopoietic cells, marrow adipose tissue, and supportive stromal cells. In adult humans, bone marrow is primarily located in the ribs, vertebrae, sternum, and bones of the pelvis. Bone marrow comprises approximately 5% of total body mass in healthy adult humans, such that a man weighing 73 kg (161 lbs) will have around 3.7 kg (8 lbs) of bone marrow.
The stromal cell-derived factor 1 (SDF-1), also known as C-X-C motif chemokine 12 (CXCL12), is a chemokine protein that in humans is encoded by the CXCL12 gene on chromosome 10. It is ubiquitously expressed in many tissues and cell types. Stromal cell-derived factors 1-alpha and 1-beta are small cytokines that belong to the chemokine family, members of which activate leukocytes and are often induced by proinflammatory stimuli such as lipopolysaccharide, TNF, or IL1. The chemokines are characterized by the presence of 4 conserved cysteines that form 2 disulfide bonds. They can be classified into 2 subfamilies. In the CC subfamily, the cysteine residues are adjacent to each other. In the CXC subfamily, they are separated by an intervening amino acid. The SDF1 proteins belong to the latter group. CXCL12 signaling has been observed in several cancers. The CXCL12 gene also contains one of 27 SNPs associated with increased risk of coronary artery disease.
In cell biology, an effector cell is any of various types of cell that actively responds to a stimulus and effects some change.
Adult stem cells are undifferentiated cells, found throughout the body after development, that multiply by cell division to replenish dying cells and regenerate damaged tissues. Also known as somatic stem cells, they can be found in juvenile, adult animals, and humans, unlike embryonic stem cells.
Interleukin 19 (IL-19) is an immunosuppressive protein that belongs to the IL-10 cytokine subfamily.
A macrophage-activating factor (MAF) is a lymphokine or other receptor based signal that primes macrophages towards cytotoxicity to tumors, cytokine secretion, or clearance of pathogens. Similar molecules may cause development of an inhibitory, regulatory phenotype. A MAF can also alter the ability of macrophages to present MHC I antigen, participate in Th responses, and/or affect other immune responses.
Bone-marrow-derived macrophage (BMDM) refers to macrophage cells that are generated in a research laboratory from mammalian bone marrow cells. BMDMs can differentiate into mature macrophages in the presence of growth factors and other signaling molecules. Undifferentiated bone marrow cells are cultured in the presence of macrophage colony-stimulating factor. M-CSF is a cytokine and growth factor that is responsible for the proliferation and commitment of myeloid progenitors into monocytes. Macrophages have a wide variety of functions in the body including phagocytosis of foreign invaders and other cellular debris, releasing cytokines to trigger immune responses, and antigen presentation. BMDMs provide a large homogenous population of macrophages that play an increasingly important role in making macrophage-related research possible and financially feasible.
Mesenchymal stem cells (MSCs) are multipotent cells found in multiple human adult tissues, including bone marrow, synovial tissues, and adipose tissues. Since they are derived from the mesoderm, they have been shown to differentiate into bone, cartilage, muscle, and adipose tissue. MSCs from embryonic sources have shown promise scientifically while creating significant controversy. As a result, many researchers have focused on adult stem cells, or stem cells isolated from adult humans that can be transplanted into damaged tissue.
Mesenchymal stem cells (MSCs) also known as mesenchymal stromal cells or medicinal signaling cells are multipotent stromal cells that can differentiate into a variety of cell types, including osteoblasts, chondrocytes, myocytes and adipocytes.
Adult mesenchymal stem cells are being used by researchers in the fields of regenerative medicine and tissue engineering to artificially reconstruct human tissue which has been previously damaged. Mesenchymal stem cells are able to differentiate, or mature from a less specialized cell to a more specialized cell type, to replace damaged tissues in various organs.
The tumor microenvironment (TME) is a complex ecosystem surrounding a tumor, composed of a variety of non-cancerous cells including blood vessels, immune cells, fibroblasts, signaling molecules and the extracellular matrix (ECM). Mutual interaction between cancer cells and the different components of the TME support its growth and invasion in healthy tissues which correlates with tumor resistance to current treatments and poor prognosis. Tumors can influence the microenvironment by releasing extracellular signals, promoting tumor angiogenesis and inducing peripheral immune tolerance, while the immune cells in the microenvironment can affect the growth and evolution of cancerous cells.
Lymph node stromal cells are essential to the structure and function of the lymph node whose functions include: creating an internal tissue scaffold for the support of hematopoietic cells; the release of small molecule chemical messengers that facilitate interactions between hematopoietic cells; the facilitation of the migration of hematopoietic cells; the presentation of antigens to immune cells at the initiation of the adaptive immune system; and the homeostasis of lymphocyte numbers. Stromal cells originate from multipotent mesenchymal stem cells.
Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells, derived from common lymphoid progenitors (CLPs). In response to pathogenic tissue damage, ILCs contribute to immunity via the secretion of signalling molecules, and the regulation of both innate and adaptive immune cells. ILCs are primarily tissue resident cells, found in both lymphoid, and non- lymphoid tissues, and rarely in the blood. They are particularly abundant at mucosal surfaces, playing a key role in mucosal immunity and homeostasis. Characteristics allowing their differentiation from other immune cells include the regular lymphoid morphology, absence of rearranged antigen receptors found on T cells and B cells, and phenotypic markers usually present on myeloid or dendritic cells.
Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of immune cells from the myeloid lineage.
Many human blood cells, such as red blood cells (RBCs), immune cells, and even platelets all originate from the same progenitor cell, the hematopoietic stem cell (HSC). As these cells are short-lived, there needs to be a steady turnover of new blood cells and the maintenance of an HSC pool. This is broadly termed hematopoiesis. This event requires a special environment, termed the hematopoietic stem cell niche, which provides the protection and signals necessary to carry out the differentiation of cells from HSC progenitors. This niche relocates from the yolk sac to eventually rest in the bone marrow of mammals. Many pathological states can arise from disturbances in this niche environment, highlighting its importance in maintaining hematopoiesis.
A cancer-associated fibroblast (CAF) is a cell type within the tumor microenvironment that promotes tumorigenic features by initiating the remodelling of the extracellular matrix or by secreting cytokines. CAFs are a complex and abundant cell type within the tumour microenvironment; the number cannot decrease, as they are unable to undergo apoptosis.
OP9 cells are a cell line derived from mouse bone marrow stromal cells (mesenchyme). These cells are now characterized as stem cells. When co-cultured with embryonic stem cells (ESC), OP9 cells can induce ESC to differentiate into blood cells by serving as a feeder layer. They have the potential to be used in cell therapy, regenerative medicine and as immunomodulators.
Craniofacial regeneration refers to the biological process by which the skull and face regrow to heal an injury. This page covers birth defects and injuries related to the craniofacial region, the mechanisms behind the regeneration, the medical application of these processes, and the scientific research conducted on this specific regeneration. This regeneration is not to be confused with tooth regeneration. Craniofacial regrowth is broadly related to the mechanisms of general bone healing.
{{cite journal}}
: Cite journal requires |journal=
(help)