Rabies in animals

Last updated

Close-up of a dog during late-stage ("dumb") paralytic rabies. Animals with "dumb" rabies appear depressed, lethargic, and uncoordinated. Gradually they become completely paralyzed. When their throat and jaw muscles are paralyzed, the animals will drool and have difficulty swallowing. Dog with rabies.jpg
Close-up of a dog during late-stage ("dumb") paralytic rabies. Animals with "dumb" rabies appear depressed, lethargic, and uncoordinated. Gradually they become completely paralyzed. When their throat and jaw muscles are paralyzed, the animals will drool and have difficulty swallowing.

In animals, rabies is a viral zoonotic neuro-invasive disease which causes inflammation in the brain and is usually fatal. Rabies, caused by the rabies virus, primarily infects mammals. In the laboratory it has been found that birds can be infected, as well as cell cultures from birds, reptiles and insects. [1] The brains of animals with rabies deteriorate. As a result, they tend to behave bizarrely and often aggressively, increasing the chances that they will bite another animal or a person and transmit the disease.

Contents

In addition to irrational aggression, the virus can induce hydrophobia ("fear of water")—wherein attempts to drink water or swallow cause painful spasms of the muscles in the throat or larynx—and an increase in saliva production. This aids the likelihood of transmission, as the virus multiplies and accumulates in the salivary glands and is transmitted primarily through biting. [2] The accumulation of saliva can sometimes create a "foaming at the mouth" effect, which is commonly associated with rabies in animals in the public perception and in popular culture; [3] [4] [5] however, rabies does not always present as such, and may be carried without typical symptoms being displayed. [3]

Most cases of humans contracting rabies from infected animals are in developing nations. In 2010, an estimated 26,000 people died from the disease, down from 54,000 in 1990. [6] The World Health Organization (WHO) reports that dogs are the main source of human rabies deaths, contributing up to 99% of all transmissions of the disease to humans. [7] Rabies in dogs, humans and other animals can be prevented through vaccination.

Stages of disease

Three stages of rabies are recognized in dogs and other animals.

  1. The first stage, known as the prodromal stage, is a one- to three-day period that occurs once the virus reaches the brain, and enters the beginning of encephalitis. Outwardly, it is characterized by behavioral changes such as restlessness, deep fatigue, and pain indications such as self-biting or itching. Some animals demonstrate more social behavior while others conversely, self-isolate; this is an early warning sign of the pathogen changing the hosts’ behavior to speed up transmission. [8] Physical shifts such as fever, or nausea may also be present. Once this stage is reached, treatment is usually no longer viable. The onset of the prodromal stage can vary significantly, which can be attested to factors such as the strain of the virus, the viral load, the route of transmission, and the distance the virus must travel up the peripheral nerves to the central nervous system. The incubation period can be between months to years in humans but typically averages down to weeks or as little as a day in most mammals. [9]
  2. The second stage is the excitative stage, which lasts three to four days. It is this stage that is often known as furious rabies due to the tendency of the affected animal to be hyperreactive to external stimuli and bite at anything near.
  3. The third stage is the paralytic or "dumb" stage and is caused by damage to motor neurons. Incoordination is seen due to rear limb paralysis and drooling and difficulty swallowing is caused by paralysis of facial and throat muscles. This disables the host's ability to swallow, which causes saliva to pour from the mouth. This causes bites to be the most common way for the infection to spread, as the virus is most concentrated in the throat and cheeks, causing major contamination to saliva. Death is usually caused by respiratory arrest. [10]

Mammals

Bats

Bat-transmitted rabies occurs throughout North and South America but it was first closely studied in Trinidad in the West Indies. This island was experiencing a significant toll of livestock and humans alike to rabid bats. In the 10 years from 1925 and 1935, 89 people and thousands of livestock had died from it—"the highest human mortality from rabies-infected bats thus far recorded anywhere." [11]

In 1931, Dr. Joseph Lennox Pawan of Trinidad in the West Indies, a government bacteriologist, found Negri bodies in the brain of a bat with unusual habits. In 1932, Dr. Pawan discovered that infected vampire bats could transmit rabies to humans and other animals. [12] [13] In 1934, the Trinidad and Tobago government began a program of eradicating vampire bats, while encouraging the screening off of livestock buildings and offering free vaccination programs for exposed livestock.

After the opening of the Trinidad Regional Virus Laboratory in 1953, Arthur Greenhall demonstrated that at least eight species of bats in Trinidad had been infected with rabies; including the common vampire bat, the rare white-winged vampire bat, as well as two abundant species of fruit bats: Seba's short-tailed bat and the Jamaican fruit bat. [14]

Recent data sequencing suggests recombination events in an American bat led the modern rabies virus to gain the head of a G-protein ectodomain thousands of years ago. This change occurred in an organism that had both rabies and a separate carnivore virus. The recombination resulted in a cross-over that gave rabies a new success rate across hosts since the G-protein ectodomain, which controls binding and pH receptors, was now suited for carnivore hosts as well. [15]

Cryptic rabies refers to unidentified infections, which are mainly traced back to particularly virulent forms in silver-haired and tricolor bats. These are generally rather reclusive species, [16] so the relative degree of infection and similarities between their strains is unusual. Both are independent rabies reservoir species but make up a large number of bites. This absence of typical symptoms can often cause major delays in treatment and diagnosis in both animals and humans, as the required post-exposure prophylaxis and dFAT tests may not be run.

Cats

In the United States, domestic cats are the most commonly reported rabid animal. [17] In the United States, as of 2008, between 200 and 300 cases are reported annually; [18] in 2017, 276 cats with rabies were reported. [19] As of 2010, in every year since 1990, reported cases of rabies in cats outnumbered cases of rabies in dogs. [17]

Cats that have not been vaccinated and are allowed access to the outdoors have the most risk for contracting rabies, as they may come in contact with rabid animals. The virus is often passed on during fights between cats or other animals and is transmitted by bites, saliva or through mucous membranes and fresh wounds. [20] The virus can incubate from one day up to over a year before any symptoms begin to show. Symptoms have a rapid onset and can include unusual aggression, restlessness, lethargy, anorexia, weakness, disorientation, paralysis and seizures. [21] Vaccination of felines (including boosters) by a veterinarian is recommended to prevent rabies infection in outdoor cats. [20]

Cattle

In cattle-raising areas where vampire bats are common, fenced-in cows often become a primary target for the bats (along with horses), due to their easy accessibility compared to wild mammals. [22] [23] In Latin America, vampire bats are the primary reservoir of the rabies virus, and in Peru, for instance, researchers have calculated that over 500 cattle per year die of bat-transmitted rabies. [24]

Vampire bats have been extinct in the United States for thousands of years (a situation that may reverse due to climate change, as the range of vampire bats in northern Mexico has recently been creeping northward with warmer weather), thus United States cattle are not currently susceptible to rabies from this vector. [23] [25] [26] However, cases of rabies in dairy cows in the United States has occurred (perhaps transmitted by bites from canines), leading to concerns that humans consuming unpasteurized dairy products from these cows could be exposed to the virus. [27]

Vaccination programs in Latin America have been effective at protecting cattle from rabies, along with other approaches such as the culling of vampire bat populations. [24] [28] [29]

Coyotes

Rabies is common in coyotes, and can be a cause for concern if they interact with humans. [30]

Dogs

A folio from 1224 depicting a rabid dog biting a man. Medieval rabies folio.jpg
A folio from 1224 depicting a rabid dog biting a man.
An image from 1566 depicting a group of men using an assortment of weapons to try and kill a rabid dog who is biting one of the men on the leg. Rabies; Slaying a mad dog Wellcome L0009996.jpg
An image from 1566 depicting a group of men using an assortment of weapons to try and kill a rabid dog who is biting one of the men on the leg.

Rabies has a long history of association with dogs. The first written record of rabies is in the Codex of Eshnunna (c.1930 BC), which dictates that the owner of a dog showing symptoms of rabies should take preventive measure against bites. If a person was bitten by a rabid dog and later died, the owner was fined heavily. [31]

Almost all of the human deaths attributed to rabies are due to rabies transmitted by dogs in countries where dog vaccination programs are not sufficiently developed to stop the spread of the virus. [32]

Foxes

Rabies is endemic throughout most of the world, though incubation time and antigen types shift depending on its host. Arctic rabies is a specific strain of Rabies lyssavirus that is most closely phylogenetically related to a separate strand halfway down the world in India and has an incubation period that can last up to six months, comparable to that of the virus in humans. [33] It is very rarely studied due to difficulties in lab cultivation and in finding samples, but studies have shown unique antigenic variants in different hosts, most commonly the arctic fox, Vulpes lagopus, a highly dense species. Though this strain is claimed to be less pathogenic to humans, that may be a correlation to low exposure rates rather than a physiological fact.

Horses

Rabies can be contracted in horses if they interact with rabid animals in their pasture, usually through being bitten (e.g. by vampire bats) [25] [23] on the muzzle or lower limbs. Signs include aggression, incoordination, head-pressing, circling, lameness, muscle tremors, convulsions, colic and fever. [34] Horses that experience the paralytic form of rabies have difficulty swallowing, and drooping of the lower jaw due to paralysis of the throat and jaw muscles. Incubation of the virus may range from 2–9 weeks. [35] Death often occurs within 4–5 days of infection of the virus. [34] There are no effective treatments for rabies in horses. Veterinarians recommend an initial vaccination as a foal at three months of age, repeated at one year and given an annual booster. [34]

Monkeys

Monkeys, like humans, can get rabies; however, they do not tend to be a common source of rabies. [36] Monkeys with rabies tend to die more quickly than humans. In one study, 9 of 10 monkeys developed severe symptoms or died within 20 days of infection. [37] Monkeys as an infectious agent are often a concern for individuals residing in or travelling to developing countries as they are the second most common source of rabies after dogs in many of these places. [38]

Rabbits

Despite natural infection of rabbits being rare, they are particularly vulnerable to the rabies virus; rabbits were used to develop the first rabies vaccine by Louis Pasteur in the 1880s, and continue to be used for rabies diagnostic testing. The virus is often contracted when attacked by other rabid animals and can incubate within a rabbit for up to two to three weeks. Symptoms include weakness in limbs, head tremors, low appetite, nasal discharge, and death within three to four days. There are currently no vaccines available for rabbits. The National Institutes of Health recommends that rabbits be kept indoors or enclosed in hutches outside that do not allow other animals to come in contact with them. [18]

Red pandas

Although rare, cases of rabies in red pandas have been recorded. [39]

Skunks

In the United States, there is currently no USDA-approved vaccine for the strain of rabies that afflicts skunks. When cases are reported of pet skunks biting a human, the animals are frequently killed in order to be tested for rabies. It has been reported that three different variants of rabies exist in striped skunks in the north and south central states. [18]

Humans exposed to the rabies virus must begin post-exposure prophylaxis before the disease can progress to the central nervous system. For this reason, it is necessary to determine whether the animal, in fact, has rabies as quickly as possible. Without a definitive quarantine period in place for skunks, quarantining the animals is not advised as there is no way of knowing how long it may take the animal to show symptoms. Destruction of the skunk is recommended and the brain is then tested for presence of rabies virus.

Skunk owners have recently organized to campaign for USDA approval of both a vaccine and an officially recommended quarantine period for skunks in the United States.[ citation needed ]

Wolves

Under normal circumstances, wild wolves are generally timid around humans, though there are several reported circumstances in which wolves have been recorded to act aggressively toward humans. [40] The majority of fatal wolf attacks have historically involved rabies, which was first recorded in wolves in the 13th century. The earliest recorded case of an actual rabid wolf attack comes from Germany in 1557. Though wolves are not reservoirs for the disease, they can catch it from other species. Wolves develop an exceptionally severe aggressive state when infected and can bite numerous people in a single attack. Before a vaccine was developed, bites were almost always fatal. Today, wolf bites can be treated, but the severity of rabid wolf attacks can sometimes result in outright death, or a bite near the head will make the disease act too fast for the treatment to take effect. [40]

Rabid attacks tend to cluster in winter and spring. With the reduction of rabies in Europe and North America, few rabid wolf attacks have been recorded, though some still occur annually in the Middle East. Rabid attacks can be distinguished from predatory attacks by the fact that rabid wolves limit themselves to biting their victims rather than consuming them. Plus, the timespan of predatory attacks can sometimes last for months or years, as opposed to rabid attacks which end usually after a fortnight. Victims of rabid wolves are usually attacked around the head and neck in a sustained manner. [40]

Asian elephants

One of the largest land mammals on the continent of Asia, these elephants typically live in India, Indonesia, Nepal, and Cambodia: countries that have ongoing rabies epidemics. About 1.4% of these elephants die from rabies, most of these cases come from bites/attacks from wild dogs. When left untreated, the mammal can suffer from Paralytic(dumb) rabies and their limbs slowly begin to paralyze. With that, hunger decreases, bowel movements begin to cease, and the elephant's behavior can begin to change. After five days, the animal dies. When treated, elephants receive the 'equine tetanus toxoid' annually. These vaccinated elephants can develop a humoral immune response and combat the deadly symptoms of the rabies virus. [41]

Other placental mammals

The most commonly infected terrestrial animals in the United States are raccoons, skunks, foxes, and coyotes. Any bites by such wild animals must be considered a possible exposure to the rabies virus.

Most cases of rabies in rodents reported to the Centers for Disease Control and Prevention in the United States have been found among groundhogs (woodchucks). Small rodents such as squirrels, hamsters, guinea pigs, gerbils, chipmunks, rats, mice, and lagomorphs like rabbits and hares are almost never found to be infected with rabies, and are not known to transmit rabies to humans. [42]

Outside of the United States, extensive research has been conducted on animals outside the norm of usual infection patterns. The yellow mongoose, native to South Africa, has been known to asymptomatically carry the rabies virus for several years. In a study performed in 1993, several major outbreaks in adjacent farms over the course of 11 years were all traced to a single population. [43] The long-dormant phase of this virus makes horizontal transfer possible in this stage through breeding and typical injuries from territory fights. It is unknown what triggers the emergence of the virus when it does enter the prodromal stage, but it is hypothesized to be caused by stressors such as lack of food or other stressors in heavily populated areas. Complicating this further is the difficulty in testing for rabies before death, as it takes up cells around the brainstem and in the nerves and saliva.

In the same geographic region, the greater kudu, a species of antelope in Namibia, have also suffered enormous outbreaks of rabies in their populations. The greater kudu is a member of the Tragelaphini antelopes, which is more closely related to cows than to other antelopes and is extremely susceptible to the virus. During the first epidemic from 1997 to 1996, as much as 20% of the population succumbed to the disease; phylogenetic analyses likewise proved that the rapid spread was largely by horizontal transfer. Kudu are a large factor in the agriculture and economy of Namibia, but their status as wildlife makes prevention of the disease much more difficult. [44]

Marsupial and monotreme mammals

The Virginia opossum (a marsupial, unlike the other mammals named above, which are all eutherians/placental), has a lower internal body temperature than the rabies virus prefers and therefore is resistant but not immune to rabies. [45] Marsupials, along with monotremes (platypuses and echidnas), typically have lower body temperatures than similarly sized eutherians. [46]

Birds

Birds were first artificially infected with rabies in 1884, with work being done on a large variety of species including domestic fowl and pigeons. Hundreds of years of testing has concluded that infected birds are largely, if not wholly, asymptomatic, and recover; a 1988 study examined a number of birds of prey, such as red-tailed hawks, bald eagles, horned owls, and turkey vultures, and concluded that they were unlikely to be reservoirs of rabies. [47] Other bird species have been known to develop rabies antibodies, a sign of infection, after feeding on rabies-infected mammals. [48] [49]

See also

Footnotes

  1. "CARTER John, SAUNDERS Venetia - Virology : Principles and Applications – Page:175 – 2007 – John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England – 978-0-470-02386-0 (HB)"
  2. "Rabies". AnimalsWeCare.com. Archived from the original on 3 September 2014.
  3. 1 2 Wilson PJ, Rohde RE, Oertli EH, Willoughby Jr RE (2019). Rabies: Clinical Considerations and Exposure Evaluations (1st ed.). Elsevier. p. 28. ISBN   978-0-323-63979-8 . Retrieved May 10, 2023.
  4. "How Do You Know if an Animal Has Rabies? | CDC Rabies and Kids". Centers for Disease Control and Prevention (CDC). Retrieved May 10, 2023.
  5. "Rabies (for Parents)". KidsHealth.org. Nemours KidsHealth . Retrieved May 10, 2023.
  6. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, et al. (Dec 15, 2012). "Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010" (PDF). Lancet. 380 (9859): 2095–128. doi:10.1016/S0140-6736(12)61728-0. hdl: 10536/DRO/DU:30050819 . PMC   10790329 . PMID   23245604. S2CID   1541253. Archived from the original (PDF) on August 1, 2020. Retrieved September 27, 2019.
  7. "Rabies". World Health Organization (WHO). Archived from the original on May 10, 2023. Retrieved May 10, 2023.
  8. Murray KO, Holmes KC, Hanlon CA (2009-09-15). "Rabies in vaccinated dogs and cats in the United States, 1997–2001". Journal of the American Veterinary Medical Association. 235 (6): 691–695. doi:10.2460/javma.235.6.691. PMID   19751164.
  9. Hueffer K, Khatri S, Rideout S, Harris MB, Papke RL, Stokes C, Schulte MK (2017-10-09). "Rabies virus modifies host behaviour through a snake-toxin like region of its glycoprotein that inhibits neurotransmitter receptors in the CNS". Scientific Reports. 7 (1): 12818. Bibcode:2017NatSR...712818H. doi:10.1038/s41598-017-12726-4. ISSN   2045-2322. PMC   5634495 . PMID   28993633.
  10. Ettinger, Stephen J., Feldman, Edward C. (1995). Textbook of Veterinary Internal Medicine (4th ed.). W.B. Saunders Company. ISBN   978-0-7216-6795-9.
  11. Goodwin and Greenhall (1961), p. 196
  12. Pawan (1936), pp. 137-156.
  13. Pawan, J.L. (1936b). "Rabies in the Vampire Bat of Trinidad with Special Reference to the Clinical Course and the Latency of Infection." Annals of Tropical Medicine and Parasitology. Vol. 30, No. 4. December, 1936.
  14. Greenhall, Arthur M. 1961. Bats in Agriculture. Ministry of Agriculture, Trinidad and Tobago.
  15. Ding NZ, Xu DS, Sun YY, He HB, He CQ (2017). "A permanent host shift of rabies virus from Chiroptera to Carnivora associated with recombination". Scientific Reports. 7 (1): 289. Bibcode:2017NatSR...7..289D. doi:10.1038/s41598-017-00395-2. PMC   5428239 . PMID   28325933.
  16. Messenger, Sharon L.; Smith, Jean S.; Rupprecht, Charles E. (15 September 2002). "Emerging Epidemiology of Bat-Associated Cryptic Cases of Rabies in Humans in the United States". Clinical Infectious Diseases. 35 (6): 738–747, https://doi.org/10.1086/342387
  17. 1 2 Cynthia M. Kahn, ed. (2010). The Merck Veterinary Manual (10th ed.). Kendallville, Indiana: Courier Kendallville, Inc. p. 1193. ISBN   978-0-911910-93-3.
  18. 1 2 3 Lackay SN, Kuang Y, Fu ZF (2008). "Rabies in small animals". Vet Clin North Am Small Anim Pract. 38 (4): 851–ix. doi:10.1016/j.cvsm.2008.03.003. PMC   2518964 . PMID   18501283.
  19. "Rabies Vaccination Key to Prevent Infection - Veterinary Medicine at Illinois". University of Illinois College of Veterinary Medicine. Retrieved 2019-12-15.
  20. 1 2 "Rabies in Cats". WebMD. Retrieved 2016-12-04.
  21. "Rabies Symptoms in Cats". petMD. Retrieved 2016-12-04.
  22. Bryner J (2007-08-15). "Thriving on Cattle Blood, Vampire Bats Proliferate". livescience.com. Retrieved 2019-10-28.
  23. 1 2 3 Carey B (2011-08-12). "First U.S. Death by Vampire Bat: Should We Worry?". livescience.com. Retrieved 2019-10-28.
  24. 1 2 Benavides JA, Paniagua ER, Hampson K, Valderrama W, Streicker DG (2017-12-21). "Quantifying the burden of vampire bat rabies in Peruvian livestock". PLOS Neglected Tropical Diseases. 11 (12): e0006105. doi: 10.1371/journal.pntd.0006105 . ISSN   1935-2735. PMC   5739383 . PMID   29267276.
  25. 1 2 "Do vampire bats really exist?". USGS . Retrieved 2019-10-28.
  26. Baggaley K (2017-10-27). "Vampire bats could soon swarm to the United States". Popular Science . Retrieved 2019-10-28.
  27. "Rabies in a Dairy Cow, Oklahoma | News | Resources | CDC". www.cdc.gov. 2019-08-22. Retrieved 2019-10-28.
  28. Arellano-Sota C (1988-12-01). "Vampire bat-transmitted rabies in cattle". Reviews of Infectious Diseases. 10 (Suppl 4): S707–709. doi:10.1093/clinids/10.supplement_4.s707. ISSN   0162-0886. PMID   3206085.
  29. Thompson RD, Mitchell GC, Burns RJ (1972-09-01). "Vampire bat control by systemic treatment of livestock with an anticoagulant". Science. 177 (4051): 806–808. Bibcode:1972Sci...177..806T. doi:10.1126/science.177.4051.806. ISSN   0036-8075. PMID   5068491. S2CID   45084731.
  30. Wang X, Brown CM, Smole S, Werner BG, Han L, Farris M, DeMaria A (2010). "Aggression and Rabid Coyotes, Massachusetts, USA". Emerging Infectious Diseases. 16 (2): 357–359. doi:10.3201/eid1602.090731. PMC   2958004 . PMID   20113587.
  31. Dunlop RH, Williams, David J. (1996). Veterinary Medicine:An Illustrated History. Mosby. ISBN   978-0-8016-3209-9.
  32. "Rabies and Your Pet". American Veterinary Medical Association. Retrieved 2019-12-15.
  33. Mørk T, Prestrud P (2004-03-31). "Arctic Rabies – A Review". Acta Veterinaria Scandinavica. 45 (1): 1–9. doi: 10.1186/1751-0147-45-1 . ISSN   1751-0147. PMC   1820997 . PMID   15535081.
  34. 1 2 3 "Rabies and Horses". www.omafra.gov.on.ca. Retrieved 2016-12-04.
  35. "Rabies in Horses: Brain, Spinal Cord, and Nerve Disorders of Horses: The Merck Manual for Pet Health". www.merckvetmanual.com. Archived from the original on 2016-11-13. Retrieved 2016-12-04.
  36. "Diseases Transmissible From Monkeys To Man - Monkey to Human Bites And Exposure". www.2ndchance.info. Retrieved 2016-12-04.
  37. Weinmann E, Majer M, Hilfenhaus J (1979). "Intramuscular and/or Intralumbar Postexposure Treatment of Rabies Virus-Infected Cynomolgus Monkeys with Human Interferon". Infection and Immunity. 24 (1). American Society for Microbiology: 24–31. doi:10.1128/IAI.24.1.24-31.1979. PMC   414256 . PMID   110693.
  38. Di Quinzio M, McCarthy A (2008-02-26). "Rabies risk among travellers". CMAJ: Canadian Medical Association Journal. 178 (5): 567. doi:10.1503/cmaj.071443. ISSN   0820-3946. PMC   2244672 . PMID   18299544.
  39. "How to Care for Red Pandas". Smithsonian's National Zoo. 2020-09-22. Retrieved 2023-08-10.
  40. 1 2 3 "The Fear of Wolves: A Review of Wolf Attacks on Humans" (PDF). Norsk Institutt for Naturforskning. Archived from the original (PDF) on 2005-02-11. Retrieved 2008-06-26.
  41. Isaza R, et al. (November 2006). "Results of Vaccination of Asian Elephants (Elephas Maximus) With Monovalent Inactivated Rabies Vaccine". American Journal of Veterinary Research. 67 (11): 1934–1936. doi:10.2460/ajvr.67.11.1934.
  42. "Rabies. Other Wild Animals: Terrestrial carnivores: raccoons, skunks and foxes". 1600 Clifton Rd, Atlanta, GA 30333, USA: Centers for Disease Control and Prevention. Retrieved 2010-12-23.{{cite web}}: CS1 maint: location (link)
  43. Taylor PJ (December 1993). "A systematic and population genetic approach to the rabies problem in the yellow mongoose (Cynictis penicillata)". The Onderstepoort Journal of Veterinary Research. 60 (4): 379–387. ISSN   0030-2465. PMID   7777324.
  44. Hikufe EH, Freuling CM, Athingo R, Shilongo A, Ndevaetela EE, Helao M, Shiindi M, Hassel R, Bishi A, Khaiseb S, Kabajani J, Westhuizen Jv, Torres G, Britton A, Letshwenyo M (2019-04-16). "Ecology and epidemiology of rabies in humans, domestic animals and wildlife in Namibia, 2011-2017". PLOS Neglected Tropical Diseases. 13 (4): e0007355. doi: 10.1371/journal.pntd.0007355 . ISSN   1935-2735. PMC   6486109 . PMID   30990805.
  45. McRuer DL, Jones KD (May 2009). "Behavioral and nutritional aspects of the Virginian opossum (Didelphis virginiana)". The Veterinary Clinics of North America. Exotic Animal Practice. 12 (2): 217–36, viii. doi:10.1016/j.cvex.2009.01.007. PMID   19341950.
  46. Gaughan, John B., Hogan, Lindsay A., Wallage, Andrea (2015). Abstract: Thermoregulation in marsupials and monotremes, chapter of Marsupials and monotremes: nature's enigmatic mammals. Nova Science Publishers, Incorporated. ISBN   978-1-63483-487-2 . Retrieved 2022-04-20.
  47. Shannon LM, Poulton JL, Emmons RW, Woodie JD, Fowler ME (April 1988). "Serological survey for rabies antibodies in raptors from California". Journal of Wildlife Diseases. 24 (2): 264–7. doi: 10.7589/0090-3558-24.2.264 . PMID   3286906.
  48. Gough PM, Jorgenson RD (July 1976). "Rabies antibodies in sera of wild birds". Journal of Wildlife Diseases. 12 (3): 392–5. doi:10.7589/0090-3558-12.3.392. PMID   16498885. S2CID   27867384.
  49. Jorgenson RD, Gough PM, Graham DL (July 1976). "Experimental rabies in a great horned owl". Journal of Wildlife Diseases. 12 (3): 444–7. doi:10.7589/0090-3558-12.3.444. PMID   16498892. S2CID   11374356.

Related Research Articles

<span class="mw-page-title-main">Canine distemper</span> Viral disease affecting some mammals

Canine distemper virus (CDV) is a viral disease that affects a wide variety of mammal families, including domestic and wild species of dogs, coyotes, foxes, pandas, wolves, ferrets, skunks, raccoons, and felines, as well as pinnipeds, some primates, and a variety of other species. CDV does not affect humans.

<span class="mw-page-title-main">Rabies virus</span> Species of virus

Rabies virus, scientific name Rabies lyssavirus, is a neurotropic virus that causes rabies in animals, including humans. It can cause violence, hydrophobia, and fever. Rabies transmission can also occur through the saliva of animals and less commonly through contact with human saliva. Rabies lyssavirus, like many rhabdoviruses, has an extremely wide host range. In the wild it has been found infecting many mammalian species, while in the laboratory it has been found that birds can be infected, as well as cell cultures from mammals, birds, reptiles and insects. Rabies is reported in more than 150 countries and on all continents except Antarctica. The main burden of disease is reported in Asia and Africa, but some cases have been reported also in Europe in the past 10 years, especially in returning travellers.

<span class="mw-page-title-main">Natural reservoir</span> Type of population in infectious disease ecology

In infectious disease ecology and epidemiology, a natural reservoir, also known as a disease reservoir or a reservoir of infection, is the population of organisms or the specific environment in which an infectious pathogen naturally lives and reproduces, or upon which the pathogen primarily depends for its survival. A reservoir is usually a living host of a certain species, such as an animal or a plant, inside of which a pathogen survives, often without causing disease for the reservoir itself. By some definitions a reservoir may also be an environment external to an organism, such as a volume of contaminated air or water.

<span class="mw-page-title-main">Animal bite</span> Wound or puncture caused by animal teeth

An animal bite is a wound, usually a puncture or laceration, caused by the teeth. An animal bite usually results in a break in the skin but also includes contusions from the excessive pressure on body tissue from the bite. The contusions can occur without a break in the skin. Bites can be provoked or unprovoked. Other bite attacks may be apparently unprovoked. Biting is a physical action not only describing an attack but it is a normal response in an animal as it eats, carries objects, softens and prepares food for its young, removes ectoparasites from its body surface, removes plant seeds attached to its fur or hair, scratching itself, and grooming other animals. Animal bites often result in serious infections and mortality. Animal bites not only include injuries from the teeth of reptiles, mammals, but fish, and amphibians. Arthropods can also bite and leave injuries.

<i>Australian bat lyssavirus</i> Species of virus

Australian bat lyssavirus (ABLV), originally named Pteropid lyssavirus (PLV), is a enzootic virus closely related to the rabies virus. It was first identified in a 5-month-old juvenile black flying fox collected near Ballina in northern New South Wales, Australia, in January 1995 during a national surveillance program for the recently identified Hendra virus. ABLV is the seventh member of the genus Lyssavirus and the only Lyssavirus member present in Australia. ABLV has been categorized to the Phylogroup I of the Lyssaviruses.

<span class="mw-page-title-main">Canine parvovirus</span> Contagious virus mainly affecting dogs

Canine parvovirus is a contagious virus mainly affecting dogs and wolves. CPV is highly contagious and is spread from dog to dog by direct or indirect contact with their feces. Vaccines can prevent this infection, but mortality can reach 91% in untreated cases. Treatment often involves veterinary hospitalization. Canine parvovirus often infects other mammals including foxes, wolves, cats, and skunks. Felines (cats) are also susceptible to panleukopenia, a different strain of parvovirus.

<span class="mw-page-title-main">Canine influenza</span> Influenza occurring in canines

Canine influenza is influenza occurring in canine animals. Canine influenza is caused by varieties of influenzavirus A, such as equine influenza virus H3N8, which was discovered to cause disease in canines in 2004. Because of the lack of previous exposure to this virus, dogs have no natural immunity to it. Therefore, the disease is rapidly transmitted between individual dogs. Canine influenza may be endemic in some regional dog populations of the United States. It is a disease with a high morbidity but a low incidence of death.

<span class="mw-page-title-main">Dog bite</span> Bite by a dog that is upon a person or other animal

A dog bite is a bite upon a person or other animal by a dog. More than one successive bite is often called a dog attack, although dog attacks can include knock-downs and scratches. Though some dog bites do not result in injury, they can result in infection, disfigurement, temporary or permanent disability, or death. Another type of dog bite is the "soft bite" displayed by well-trained dogs, by puppies, and in non-aggressive play. Dog bites can occur during dog fighting, as a response to mistreatment, by trained dogs working as guard, police or military animals, or during a random encounter.

<span class="mw-page-title-main">Trinidad Regional Virus Laboratory</span>

The Trinidad Regional Virus Laboratory (T.R.V.L.) was established in Port of Spain, in 1953 by the Rockefeller Foundation in co-operation with the Government of Trinidad and Tobago. It was originally housed in an old wooden army barracks near the docks in Port of Spain. A large wired-in "animal house" was built out back to house the many wild animals brought in for study.

<span class="mw-page-title-main">Rabies vaccine</span> Vaccines to prevent rabies in humans and animals

The rabies vaccine is a vaccine used to prevent rabies. There are several rabies vaccines available that are both safe and effective. Vaccinations must be administered prior to rabies virus exposure or within the latent period after exposure to prevent the disease. Transmission of rabies virus to humans typically occurs through a bite or scratch from an infectious animal, but exposure can occur through indirect contact with the saliva from an infectious individual.

<span class="mw-page-title-main">Rabies</span> Deadly viral disease, transmitted through animals

Rabies is a viral disease that causes encephalitis in humans and other mammals. It was historically referred to as hydrophobia because its victims would panic when offered liquids to drink. Early symptoms can include fever and abnormal sensations at the site of exposure. These symptoms are followed by one or more of the following symptoms: nausea, vomiting, violent movements, uncontrolled excitement, fear of water, an inability to move parts of the body, confusion, and loss of consciousness. Once symptoms appear, the result is virtually always death. The time period between contracting the disease and the start of symptoms is usually one to three months but can vary from less than one week to more than one year. The time depends on the distance the virus must travel along peripheral nerves to reach the central nervous system.

The prevalence of rabies, a deadly viral disease affecting mammals, varies significantly across regions worldwide, posing a persistent public health problem.

<span class="mw-page-title-main">Joseph Lennox Pawan</span> Trinidadian bacteriologist

Joseph Lennox Donation Pawan MBE was a Trinidadian bacteriologist who was the first person to show that rabies could be spread by vampire bats to other animals and humans.

<span class="mw-page-title-main">Cryptic rabies</span>

Cryptic rabies refers to infection from unrecognized exposure to rabies virus. It is often phylogenetically traced to bats. It is most often seen in the southern United States. Silver-haired bats and tricolored bats are the two most common bat species associated with this form of infection, though both species are known to have less contact with humans than other bat species such as the big brown bat. That species is common throughout the United States and often roosts in buildings and homes where human contact is more likely.

<span class="mw-page-title-main">Bat virome</span> Group of viruses associated with bats

The bat virome is the group of viruses associated with bats. Bats host a diverse array of viruses, including all seven types described by the Baltimore classification system: (I) double-stranded DNA viruses; (II) single-stranded DNA viruses; (III) double-stranded RNA viruses; (IV) positive-sense single-stranded RNA viruses; (V) negative-sense single-stranded RNA viruses; (VI) positive-sense single-stranded RNA viruses that replicate through a DNA intermediate; and (VII) double-stranded DNA viruses that replicate through a single-stranded RNA intermediate. The greatest share of bat-associated viruses identified as of 2020 are of type IV, in the family Coronaviridae.

<span class="mw-page-title-main">Pierre-Victor Galtier</span>

Pierre-Victor or Pierre Victor Galtier was a veterinarian and professor at the National Veterinary School of Lyon, specialising in pathology of infectious diseases, health surveillance and commercial and medical legislation. He developed a rabies vaccine which had some experimental success in laboratory animals.

<span class="mw-page-title-main">Feline zoonosis</span> Medical condition

A feline zoonosis is a viral, bacterial, fungal, protozoan, nematode or arthropod infection that can be transmitted to humans from the domesticated cat, Felis catus. Some of these diseases are reemerging and newly emerging infections or infestations caused by zoonotic pathogens transmitted by cats. In some instances, the cat can display symptoms of infection and sometimes the cat remains asymptomatic. There can be serious illnesses and clinical manifestations in people who become infected. This is dependent on the immune status and age of the person. Those who live in close association with cats are more prone to these infections, but those that do not keep cats as pets can also acquire these infections as the transmission can be from cat feces and the parasites that leave their bodies.

<span class="mw-page-title-main">Rabies in Haiti</span> Viral disease in Haiti

Rabies is a viral disease that exists in Haiti and throughout the world. It often causes fatal inflammation of the brain in humans and other mammals, such as dogs and mongooses in Haiti. The term "rabies" is derived from a Latin word that means "to rage"; rabid animals sometimes appear to be angry. Early symptoms can include fever and tingling at the site of exposure, followed by one or more of the following symptoms: violent movements, uncontrolled excitement, fear of water, an inability to move parts of the body, confusion, and loss of consciousness. Once symptoms appear, death is nearly always the outcome. The time period between contracting the disease and showing symptoms is usually one to three months; however, this time period can vary from less than a week to more than a year. The time between contraction and the onset of symptoms is dependent on the distance the virus must travel to reach the central nervous system.

<span class="mw-page-title-main">Cat bite</span> Medical condition

Cat bites are bites inflicted upon humans, other cats, and other animals by the domestic cat. Data from the United States show that cat bites represent between 5–15% of all animal bites inflicted to humans, but it has been argued that this figure could be the consequence of under-reporting as bites made by cats are considered by some to be unimportant. Though uncommon, cat bites can sometimes transmit rabies, cause health complications, and even, though very rarely, lead to death.

<span class="mw-page-title-main">Animal vaccination</span> Process

Animal vaccination is the immunisation of a domestic, livestock or wild animal. The practice is connected to veterinary medicine. The first animal vaccine invented was for chicken cholera in 1879 by Louis Pasteur. The production of such vaccines encounter issues in relation to the economic difficulties of individuals, the government and companies. Regulation of animal vaccinations is less compared to the regulations of human vaccinations. Vaccines are categorised into conventional and next generation vaccines. Animal vaccines have been found to be the most cost effective and sustainable methods of controlling infectious veterinary diseases. In 2017, the veterinary vaccine industry was valued at US$7 billion and it is predicted to reach US$9 billion in 2024.

References