Feline calicivirus

Last updated
Feline calicivirus
Feline calicivirus.jpg
Electron micrograph of Feline calicivirus virions
Virus classification OOjs UI icon edit-ltr.svg
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Pisuviricota
Class: Pisoniviricetes
Order: Picornavirales
Family: Caliciviridae
Genus: Vesivirus
Species:
Feline calicivirus
Synonyms

Feline picornavirus [1]

Feline calicivirus (FCV) is a virus of the family Caliciviridae that causes disease in cats. It is one of the two important viral causes of respiratory infection in cats, the other being Felid alphaherpesvirus 1 . FCV can be isolated from about 50% of cats with upper respiratory infections. [2] Cheetahs are the other species of the family Felidae known to become infected naturally. [2]

Contents

Viral structure and pathogenesis

Different strains of FCV can vary in virulence (the degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host). Being an RNA virus, FCV has a high elasticity of its genome, which makes it more adaptable to environmental pressures. This not only makes the development of vaccines more difficult, but also allows for the development of more virulent strains. [3] In persistently infected cats, the gene for the major structural protein of the viral capsid (the outer protein coat of a mature virus) has been shown to evolve through immune-mediated positive selection, which allows the virus to escape detection by the immune system. [4]

A form of FCV has been found to cause a particularly severe systemic disease in cats, similar to rabbit hemorrhagic disease (which is also caused by a calicivirus). This virus has been called virulent systemic feline calicivirus (VS-FCV) or FCV-associated virulent systemic disease (VSD). The disease is caused by direct viral invasion of epithelium and endothelium and secondary host immune response. Strains of VS-FCV have seemingly risen independently of one another since first being described, meaning that not all cases of VS-FCV have spread from a single case. [5] Most of the outbreaks of VS-FCV have been reported in the United States. [3] It was originally described in 1998 in Northern California. [6]

The prevalence of FCV varies depending on the environment. In private households, FCV is present in about 10% of cats (either in active or carrier state), while the prevalence in shelters or catteries is 25 to 40%. [3]

FCV replicates in the oral and respiratory tissues, and is secreted in saliva, feces, urine, and respiratory secretions. It can be transmitted through the air, orally, and on fomites. Infected cats usually shed the virus for two weeks. [7] Following this period, infected cats never shed the virus again or become latently infected and shed the virus continuously or intermittently. [8] Co-infection with either feline herpesvirus or feline immunodeficiency virus causes a more severe disease.

Clinical signs

Feline calicivirus infection in a cat, showing ulceration over the rostral end of tongue and secondary gingivitis, faucitis and ptyalism. Note that rhinitis is also present. Katzenschnupfen Calici.jpg
Feline calicivirus infection in a cat, showing ulceration over the rostral end of tongue and secondary gingivitis, faucitis and ptyalism. Note that rhinitis is also present.

Clinical signs in cats infected with FCV may develop acutely, chronically, or not at all. Latent or subclinical infections often become clinical when the cat is stressed, such as at the time of adoption. Acute signs of FCV include fever, conjunctivitis, nasal discharge, sneezing, and ulceration of the mouth (stomatitis). Pneumonia may develop with secondary bacterial infections. In addition to stomatitis, some cats may develop a polyarthritis, both probably immune-mediated through immune complex deposition. Stomatitis and polyarthritis can develop without any upper respiratory infection signs, but fever and loss of appetite may occur. Less commonly, glomerulonephritis can develop in chronic cases secondary to immune complex deposition. The great variability of clinical signs in individual cases of FCV is related to the relative virulence of different strains of the virus.

VS-FCV can cause a rapid epidemic, with a mortality rate of up to 67%. [7] Initial clinical signs include discharge from the eyes and nose, ulceration in the mouth, anorexia, and lethargy, and occur in the first one to five days. [9] Later signs include fever, edema of the limbs and face, jaundice, and multiple organ dysfunction syndrome.

Diagnosis of FCV is difficult without specific tests, because the signs are similar to other feline respiratory diseases, especially feline viral rhinotracheitis. The presence of stomatitis may indicate FCV. Specific tests include virus culture, polymerase chain reaction, and immunohistochemical staining.

Treatment and prevention

There is no specific treatment for FCV. Antibiotics are used for secondary bacterial infections, and immune modulators, such as lymphocyte T-cell immune modulator, have been used for immune support. Nursing care and rehydration are used for dehydrated and anorexic cats. Corticosteroids or azathioprine may be used for polyarthritis. Stomatitis is very difficult to treat. Antibiotics, corticosteroids, and tooth extractions all have been used with varying success. Cats on corticosteroids must be monitored carefully for worsening of any upper respiratory infection.

Natural immunity from maternal antibodies lasts in the kitten from three to nine weeks. [7] After that, kittens are susceptible to FCV. Previous infection does not guarantee lifelong immunity, since an antigenically dissimilar FCV (such as VS-FCV) can cause infection. However, usually after the age of three years, FCV infections are mild or asymptomatic. [7] FCV vaccination will not always prevent disease, but can reduce the severity. FCV vaccines come in two types, inactivated (ATCvet code: QI06AA07 ( WHO )) and attenuated (live, but not virulent; in various combination vaccines). They have been shown to be effective for at least three years. [10] Attenuated FCV vaccine has been shown to possibly cause mild upper respiratory infection. Inactivated vaccine does not, but it causes more local inflammation and possibly predisposes the cat to vaccine-associated sarcoma. [7] The only vaccine licensed for prevention of VS-FCV is CaliciVax, manufactured by Fort Dodge Animal Health, a division of Wyeth. It also contains a strain of the traditional FCV virus. [6] Since VS-FCV has arisen from variant strains of FCV, it is not certain that a vaccine for one virulent strain will protect against all virulent strains. [11]

Quarantine is best for control of FCV in catteries and kennels. However, FCV is very contagious, and latently infected cats will continue to shed viruses, so complete control is difficult. An outbreak of VS-FCV at a humane society in Missouri in 2007 led to the euthanasia of the entire cat population (almost 200 cats) to contain it. [12] FCV may survive several days to weeks in a dry environment and longer in a cooler, wet environment. Quaternary ammonium compounds are not thought to be completely effective, but a 1:32 dilution of household bleach used with a detergent and sufficient contact time does seem to kill the virus. [3]

Herbal extracts as a source of compounds with an antiviral activity has attracted significant attention recently. Two researches independently published in 2016 screened a library of natural chemicals against FCV. The first one [13] showed that Theaflavin and its derivatives but not Kaempferol significantly inhibited entry of FCV into cells. On the contrary, authors of the second article [14] claimed that kaempherol showed anti-FCV activity, but theaflavin treatment was insufficient. This striking difference may be (at least partially) explained by differences in testing conditions. Indeed, further studies of activity, as well as molecular mechanisms of action, needed.

Use in research

Because of the similarity of FCV to norovirus, a common cause of gastroenteritis in humans, FCV has been used as a surrogate for it in research. For instance, studies have been done on the survival of FCV in foodstuffs, [15] the effectiveness of handwashing on FCV removal, [16] and the use of ozone gas to inactivate FCV found in hotel rooms, cruise ship cabins, and healthcare facilities. [17] It is also used in general Caliciviridae research due to its being one of the few of that group of viruses that grows well in vitro . [18]

See also

Related Research Articles

<span class="mw-page-title-main">Mumps</span> Human disease caused by paramyxovirus

Mumps is a viral disease caused by the mumps virus. Initial symptoms of mumps are non-specific and include fever, headache, malaise, muscle pain, and loss of appetite. These symptoms are usually followed by painful swelling of the parotid glands, called parotitis, which is the most common symptom of a mumps infection. Symptoms typically occur 16 to 18 days after exposure to the virus and resolve within two weeks. About one third of infections are asymptomatic.

<span class="mw-page-title-main">Norovirus</span> Type of viruses that cause gastroenteritis

Norovirus, sometimes referred to as the winter vomiting disease, is the most common cause of gastroenteritis. Infection is characterized by non-bloody diarrhea, vomiting, and stomach pain. Fever or headaches may also occur. Symptoms usually develop 12 to 48 hours after being exposed, and recovery typically occurs within one to three days. Complications are uncommon, but may include dehydration, especially in the young, the old, and those with other health problems.

<i>Feline immunodeficiency virus</i> Species of virus

Feline immunodeficiency virus (FIV) is a Lentivirus that affects cats worldwide, with 2.5% to 4.4% of felines being infected.

<i>Feline leukemia virus</i> Species of virus

Feline leukemia virus (FeLV) is a retrovirus that infects cats. FeLV can be transmitted from infected cats when the transfer of saliva or nasal secretions is involved. If not defeated by the animal's immune system, the virus weakens the cat's immune system, which can lead to diseases which can be lethal. Because FeLV is cat-to-cat contagious, FeLV+ cats should only live with other FeLV+ cats.

<span class="mw-page-title-main">Virulent Newcastle disease</span> Contagious viral avian disease

Virulent Newcastle disease (VND), formerly exotic Newcastle disease, is a contagious viral avian disease affecting many domestic and wild bird species; it is transmissible to humans. Though it can infect humans, most cases are non-symptomatic; rarely it can cause a mild fever and influenza-like symptoms and/or conjunctivitis in humans. Its effects are most notable in domestic poultry due to their high susceptibility and the potential for severe impacts of an epizootic on the poultry industries. It is endemic to many countries. No treatment for VND is known, but the use of prophylactic vaccines and sanitary measures reduces the likelihood of outbreaks.

<span class="mw-page-title-main">Kennel cough</span> Upper respiratory infection affecting dogs

Kennel cough is an upper respiratory infection affecting dogs. There are multiple causative agents, the most common being the bacterium Bordetella bronchiseptica, followed by canine parainfluenza virus, and to a lesser extent canine coronavirus. It is highly contagious; however, adult dogs may display immunity to reinfection even under constant exposure. Kennel cough is so named because the infection can spread quickly among dogs in the close quarters of a kennel or animal shelter.

<i>Caliciviridae</i> Family of viruses

The Caliciviridae are a family of "small round structured" viruses, members of Class IV of the Baltimore scheme. Caliciviridae bear resemblance to enlarged picornavirus and was formerly a separate genus within the picornaviridae. They are positive-sense, single-stranded RNA which is not segmented. Thirteen species are placed in this family, divided among eleven genera. Diseases associated with this family include feline calicivirus, rabbit hemorrhagic disease virus, and Norwalk group of viruses (gastroenteritis). Caliciviruses naturally infect vertebrates, and have been found in a number of organisms such as humans, cattle, pigs, cats, chickens, reptiles, dolphins and amphibians. The caliciviruses have a simple construction and are not enveloped. The capsid appears hexagonal/spherical and has icosahedral symmetry with a diameter of 35–39 nm.

Viral pathogenesis is the study of the process and mechanisms by which viruses cause diseases in their target hosts, often at the cellular or molecular level. It is a specialized field of study in virology.

<i>Carnivore protoparvovirus 1</i> Species of parvovirus

Carnivore protoparvovirus 1 is a species of parvovirus that infects carnivorans. It causes a highly contagious disease in both dogs and cats separately. The disease is generally divided into two major genogroups: FPV containing the classical feline panleukopenia virus (FPLV), and CPV-2 containing the canine parvovirus type 2 (CPV-2) which appeared in the 1970s.

Marek's disease is a highly contagious viral neoplastic disease in chickens. It is named after József Marek, a Hungarian veterinarian who described it in 1907. Marek's disease is caused by an alphaherpesvirus known as "Marek's disease virus" (MDV) or Gallid alphaherpesvirus 2 (GaHV-2). The disease is characterized by the presence of T cell lymphoma as well as infiltration of nerves and organs by lymphocytes. Viruses related to MDV appear to be benign and can be used as vaccine strains to prevent Marek's disease. For example, the related herpesvirus found in turkeys (HVT), causes no apparent disease in the birds, and continues to be used as a vaccine strain for prevention of Marek's disease.

<span class="mw-page-title-main">Canine parvovirus</span> Contagious virus mainly affecting dogs

Canine parvovirus is a contagious virus mainly affecting dogs. CPV is highly contagious and is spread from dog to dog by direct or indirect contact with their feces. Vaccines can prevent this infection, but mortality can reach 91% in untreated cases. Treatment often involves veterinary hospitalization. Canine parvovirus often infects other mammals including foxes, wolves, cats, and skunks. Felines (cats) are also susceptible to panleukopenia, a different strain of parvovirus.

Aujeszky's disease, usually called pseudorabies in the United States, is a viral disease in swine that is endemic in most parts of the world. It is caused by Suid herpesvirus 1 (SuHV-1). Aujeszky's disease is considered to be the most economically important viral disease of swine in areas where classical swine fever has been eradicated. Other mammals, such as cattle, sheep, goats, cats, dogs, and raccoons, are also susceptible. The disease is usually fatal in these animal species.

<span class="mw-page-title-main">Feline viral rhinotracheitis</span> Infectious disease of cats

Feline viral rhinotracheitis (FVR) is an upper respiratory or pulmonary infection of cats caused by Felid alphaherpesvirus 1 (FeHV-1), of the family Herpesviridae. It is also commonly referred to as feline influenza, feline coryza, and feline pneumonia but, as these terms describe other very distinct collections of respiratory symptoms, they are misnomers for the condition. Viral respiratory diseases in cats can be serious, especially in catteries and kennels. Causing one-half of the respiratory diseases in cats, FVR is the most important of these diseases and is found worldwide. The other important cause of feline respiratory disease is feline calicivirus.

Cat flu is the common name for a feline upper respiratory disease, which can be caused by one or more possible pathogens:

  1. Feline herpes virus, causing feline viral rhinotracheitis,
  2. Feline calicivirus,
  3. Bordetella bronchiseptica, or
  4. Chlamydia felis (chlamydia).
<span class="mw-page-title-main">Rabbit hemorrhagic disease</span> Disease that affects wild and domestic rabbits

Rabbit hemorrhagic disease (RHD), also known as viral hemorrhagic disease (VHD), is a highly infectious and lethal form of viral hepatitis that affects European rabbits. Some viral strains also affect hares and cottontail rabbits. Mortality rates generally range from 70 to 100 percent. The disease is caused by strains of rabbit hemorrhagic disease virus (RHDV), a lagovirus in the family Caliciviridae.

Feline vaccination is animal vaccination applied to cats. Vaccination plays a vital role in protecting cats from infectious diseases, some of which are potentially fatal. They can be exposed to these diseases from their environment, other pets, or even humans.

<span class="mw-page-title-main">Influenza</span> Infectious disease, often just "the flu"

Influenza, commonly known as "the flu", is an infectious disease caused by influenza viruses. Symptoms range from mild to severe and often include fever, runny nose, sore throat, muscle pain, headache, coughing, and fatigue. These symptoms begin from one to four days after exposure to the virus and last for about 2–8 days. Diarrhea and vomiting can occur, particularly in children. Influenza may progress to pneumonia, which can be caused by the virus or by a subsequent bacterial infection. Other complications of infection include acute respiratory distress syndrome, meningitis, encephalitis, and worsening of pre-existing health problems such as asthma and cardiovascular disease.

Vesivirus is a genus of viruses, in the family Caliciviridae. Swine, sea mammals, and felines serve as natural hosts. There are two species in this genus. Diseases associated with this genus include: respiratory disease, Feline calicivirus (FCV); conjunctivitis, and respiratory disease.

Vaccine resistance is the evolutionary adaptation of pathogens to infect and spread through vaccinated individuals, analogous to antimicrobial resistance. It concerns both human and animal vaccines. Although the emergence of a number of vaccine resistant pathogens has been well documented, this phenomenon is nevertheless much more rare and less of a concern than antimicrobial resistance.

References

  1. "ICTV Taxonomy history: Feline calicivirus". International Committee on Taxonomy of Viruses (ICTV). Retrieved 9 January 2019.
  2. 1 2 Fenner, Frank J.; Gibbs, E. Paul J.; Murphy, Frederick A.; Rott, Rudolph; Studdert, Michael J.; White, David O. (1993). Veterinary Virology (2nd ed.). Academic Press, Inc. ISBN   978-0-12-253056-2.
  3. 1 2 3 4 Radford A, Coyne K, Dawson S, Porter C, Gaskell R (2007). "Feline calicivirus" (PDF). Vet Res. 38 (2): 319–35. doi: 10.1051/vetres:2006056 . PMID   17296159.
  4. Coyne K, Reed F, Porter C, Dawson S, Gaskell R, Radford A (2006). "Recombination of Feline calicivirus within an endemically infected cat colony". J Gen Virol. 87 (Pt 4): 921–6. doi: 10.1099/vir.0.81537-0 . PMID   16528041.
  5. Ossiboff R, Sheh A, Shotton J, Pesavento P, Parker J (2007). "Feline caliciviruses (FCVs) isolated from cats with virulent systemic disease possess in vitro phenotypes distinct from those of other FCV isolates". J Gen Virol. 88 (Pt 2): 506–17. doi: 10.1099/vir.0.82488-0 . PMID   17251569.
  6. 1 2 "CaliciVax updated to cover virulent systemic feline calicivirus". DVM: 61. February 2007.
  7. 1 2 3 4 5 Foley, Janet E. (2005). "Calicivirus: Spectrum of Disease". In August, John R. (ed.). Consultations in Feline Internal Medicine Vol. 5. Elsevier Saunders. ISBN   978-0-7216-0423-7.
  8. Coyne K, Dawson S, Radford A, Cripps P, Porter C, McCracken C, Gaskell R (2006). "Long-term analysis of feline calicivirus prevalence and viral shedding patterns in naturally infected colonies of domestic cats". Vet Microbiol. 118 (1–2): 12–25. doi:10.1016/j.vetmic.2006.06.026. PMC   7117452 . PMID   16911860.
  9. Rosenthal, Marie (February 2007). "VS-FCV may be more prevalent than previously thought". Veterinary Forum. 24 (2): 23.
  10. Gore T, Lakshmanan N, Williams J, Jirjis F, Chester S, Duncan K, Coyne M, Lum M, Sterner F (2006). "Three-year duration of immunity in cats following vaccination against feline rhinotracheitis virus, feline calicivirus, and feline panleukopenia virus". Vet Ther. 7 (3): 213–22. PMID   17039444.
  11. Hurley, Kate Frances (June 2007). "Facts about Feline Calicivirus". Clinician's Brief. 5 (6): 30.
  12. "Humane Society has to put down facility's 200 felines after mass virus outbreak". DVM: 20S. July 2007.
  13. Ohba, Mai; Oka, Tomoichiro; Ando, Takayuki; Arahata, Saori; Ikegaya, Asaka; Takagi, Hirotaka; Ogo, Naohisa; Zhu, Chelsea; Owada, Kazuhiro (April 2017). "Antiviral effect of theaflavins against caliciviruses". The Journal of Antibiotics. 70 (4): 443–447. doi: 10.1038/ja.2016.128 . ISSN   0021-8820. PMID   27756911.
  14. Seo, Dong Joo; Jeon, Su Been; Oh, Hyejin; Lee, Bog-Hieu; Lee, Sook-Young; Oh, Seung Hyun; Jung, Ji Youn; Choi, Changsun (2016). "Comparison of the antiviral activity of flavonoids against murine norovirus and feline calicivirus". Food Control. 60: 25–30. doi:10.1016/j.foodcont.2015.07.023.
  15. Mattison K, Karthikeyan K, Abebe M, Malik N, Sattar S, Farber J, Bidawid S (2007). "Survival of calicivirus in foods and on surfaces: experiments with feline calicivirus as a surrogate for norovirus". J Food Prot. 70 (2): 500–3. doi: 10.4315/0362-028X-70.2.500 . PMID   17340890.
  16. Mori K, Hayashi Y, Noguchi Y, Kai A, Ohe K, Sakai S, Hara M, Morozumi S (2006). "[Effects of handwashing on Feline Calicivirus removal as Norovirus surrogate]". Kansenshogaku Zasshi. 80 (5): 496–500. doi: 10.11150/kansenshogakuzasshi1970.80.496 . PMID   17073262.
  17. Hudson J, Sharma M, Petric M (2007). "Inactivation of Norovirus by ozone gas in conditions relevant to healthcare". J Hosp Infect. 66 (1): 40–5. doi:10.1016/j.jhin.2006.12.021. PMID   17350729.
  18. Stuart A, Brown T (2006). "Entry of feline calicivirus is dependent on clathrin-mediated endocytosis and acidification in endosomes". J Virol. 80 (15): 7500–9. doi:10.1128/JVI.02452-05. PMC   1563722 . PMID   16840330.