Bleach is the generic name for any chemical product that is used industrially or domestically to remove color from (i.e. to whiten) fabric or fiber (in a process called bleaching) or to disinfect after cleaning. It often refers specifically to a dilute solution of sodium hypochlorite, also called "liquid bleach".
Many bleaches have broad-spectrum bactericidal properties, making them useful for disinfecting and sterilizing. They are used in swimming pool sanitation to control bacteria, viruses, and algae and in many places where sterile conditions are required. They are also used in many industrial processes, notably in the bleaching of wood pulp. Bleaches also have other minor uses, like removing mildew, killing weeds, and increasing the longevity of cut flowers. [1]
Bleaches work by reacting with many colored organic compounds, such as natural pigments, and turning them into colorless ones. While most bleaches are oxidizing agents (chemicals that can remove electrons from other molecules), some are reducing agents (that donate electrons).
Chlorine, a powerful oxidizer, is the active agent in many household bleaches. Since pure chlorine is a toxic corrosive gas, these products usually contain hypochlorite, which releases chlorine. "Bleaching powder" usually refers to a formulation containing calcium hypochlorite.[ citation needed ]
Oxidizing bleaching agents that do not contain chlorine are usually based on peroxides, such as hydrogen peroxide, sodium percarbonate, and sodium perborate. These bleaches are called "non-chlorine bleach", "oxygen bleach", or "color-safe bleach". [2]
Reducing bleaches have niche uses, such as sulfur dioxide, which is used to bleach wool, either as gas or from solutions of sodium dithionite, [3] and sodium borohydride.
Bleaches generally react with many other organic substances besides the intended colored pigments, so they can weaken or damage natural materials like fibers, cloth, and leather, and intentionally applied dyes, such as the indigo of denim. For the same reason, ingestion of the products, breathing of the fumes, or contact with skin or eyes can cause bodily harm and damage health.
The earliest form of bleaching involved spreading fabrics and cloth out in a bleachfield to be whitened by the action of the Sun and water. [4] [5] In the 17th century, there was a significant cloth bleaching industry in Western Europe, using alternating alkaline baths (generally lye) and acid baths (such as lactic acid from sour milk, and later diluted sulfuric acid). The whole process lasted up to six months. [4]
Chlorine-based bleaches, which shortened that process from months to hours, were invented in Europe in the late 18th century. Swedish chemist Carl Wilhelm Scheele discovered chlorine in 1774, [4] and in 1785 Savoyard scientist Claude Berthollet recognized that it could be used to bleach fabrics. [4] Berthollet also discovered sodium hypochlorite, which became the first commercial bleach, named Eau de Javel ("Javel water") after the borough of Javel, near Paris, where it was produced.
Scottish chemist and industrialist Charles Tennant proposed in 1798 a solution of calcium hypochlorite as an alternative for Javel water, and patented bleaching powder (solid calcium hypochlorite) in 1799. [4] [6] Around 1820, French chemist Antoine Germain Labarraque discovered the disinfecting and deodorizing ability of hypochlorites and was instrumental in popularizing their use for such purpose. [7] His work greatly improved medical practice, public health, and the sanitary conditions in hospitals, slaughterhouses, and all industries dealing with animal products. [8]
Louis Jacques Thénard first produced hydrogen peroxide in 1818 by reacting barium peroxide with nitric acid. [9] Hydrogen peroxide was first used for bleaching in 1882, but did not become commercially important until after 1930. [10] Sodium perborate as a laundry bleach has been used in Europe since the early twentieth century, and became popular in North America in the 1980s. [11]
Colors of natural organic materials typically arise from organic pigments, such as beta carotene. Chemical bleaches work in one of two ways:
Sunlight acts as a bleach through a process leading to similar results: high-energy photons of light, often in the violet or ultraviolet range, can disrupt the bonds in the chromophore, rendering the resulting substance colorless. Extended exposure often leads to massive discoloration usually reducing the colors to a white and typically very faded blue. [14]
The broad-spectrum effectiveness of most bleaches is due to their general chemical reactivity against organic compounds, rather than the selective inhibitory or toxic actions of antibiotics. They irreversibly denature or destroy many proteins, including all prions, making them extremely versatile disinfectants.
Hypochlorite bleaches in low concentration were also found to attack bacteria by interfering with heat shock proteins on their walls. [15] According to 2013 Home Hygiene and Health report, [16] using bleach, whether chlorine- or peroxide-based, significantly increases germicidal efficiency of laundry even at low temperatures (30-40 degrees Celsius), which makes it possible to eliminate viruses, bacteria, and fungi from a variety of clothing in a home setting. [17]
Most industrial and household bleaches belong to three broad classes:
Chlorine-based bleaches are found in many household "bleach" products, as well as in specialized products for hospitals, public health, water chlorination, and industrial processes.
The grade of chlorine-based bleaches is often expressed as percent active chlorine. One gram of 100% active chlorine bleach has the same bleaching power as one gram of elemental chlorine.
The most common chlorine-based bleaches are:
Other examples of chlorine-based bleaches, used mostly as disinfectants, are monochloramine, halazone, and sodium dichloroisocyanurate. [19] [ failed verification ]
Peroxide-based bleaches are characterized by the peroxide chemical group, namely two oxygen atoms connected by a single bond, (–O–O–). This bond is easily broken, giving rise to very reactive oxygen species, which are the active agents of this type of bleach.
The main products in this class are:
In the food industry, other oxidizing products like bromates are used as flour bleaching and maturing agents.
Sodium dithionite (also known as sodium hydrosulfite) is one of the most important reductive bleaching agents. It is a white crystalline powder with a weak sulfurous odor. It can be obtained by reacting sodium bisulfite with zinc
It is used as such in some industrial dyeing processes to eliminate excess dye, residual oxide, and unintended pigments and for bleaching wood pulp.
Reaction of sodium dithionite with formaldehyde produces Rongalite,
which is used in bleaching wood pulp, cotton, wool, leather and clay. [25]
In Negative film processing, silver halide grains are associated with couplers which, on development, produce metallic silver and a colored image. The silver is 'bleached' to a soluble form in a solution of ferric EDTA, which is then dissolved in 'fix', a solution of sodium or ammonium thiosulfate. The procedure is the same for paper processing except that the EDTA and thiosulfate are mixed in 'bleachfix'.
In Reversal processing, residual silver in the emulsion after the first development is reduced to a soluble silver salt using a chemical bleach, most commonly EDTA. A conventional fixer then dissolves the reduced silver but leaves the unexposed silver halide intact. This unexposed halide is then exposed to light or chemically treated so that a second development produces a positive image. In color and chromogenic film, this also generates a dye image in proportion to the silver.
Photographic bleaches are also used in black-and-white photography to selectively reduce silver to reduce silver density in negatives or prints. In such cases, the bleach composition is typically an acid solution of potassium dichromate.
A Risk Assessment Report (RAR) conducted by the European Union on sodium hypochlorite conducted under Regulation EEC 793/93 concluded that this substance is safe for the environment in all its current, normal uses. [26] This is due to its high reactivity and instability. The disappearance of hypochlorite is practically immediate in the natural aquatic environment, reaching in a short time concentration as low as 10−22 μg/L or less in all emission scenarios. In addition, it was found that while volatile chlorine species may be relevant in some indoor scenarios, they have a negligible impact in open environmental conditions. Further, the role of hypochlorite pollution is assumed as negligible in soils.
Industrial bleaching agents can be sources of concern. For example, the use of elemental chlorine in the bleaching of wood pulp produces organochlorines and persistent organic pollutants, including dioxins. According to an industry group, the use of chlorine dioxide in these processes has reduced the dioxin generation to under-detectable levels. [27] However, the respiratory risk from chlorine and highly toxic chlorinated byproducts still exists.
A European study conducted in 2008 indicated that sodium hypochlorite and organic chemicals (e.g., surfactants, fragrances) contained in several household cleaning products can react to generate chlorinated volatile organic compounds (VOCs). [28] These chlorinated compounds are emitted during cleaning applications, some of which are toxic and probable human carcinogens. The study showed that indoor air concentrations significantly increase (8–52 times for chloroform and 1–1170 times for carbon tetrachloride, respectively, above baseline quantities in the household) during the use of bleach-containing products. The increase in chlorinated volatile organic compound concentrations was the lowest for plain bleach and the highest for the products in the form of "thick liquid and gel".
The significant increases observed in indoor air concentrations of several chlorinated VOCs (especially carbon tetrachloride and chloroform) indicate that bleach use may be a source that could be important in terms of inhalation exposure to these compounds. While the authors suggested that using these cleaning products may significantly increase the cancer risk, [28] [29] this conclusion appears to be hypothetical:
Sodium hypochlorite solution, 3–6%, (common household bleach) is typically diluted for safe use when disinfecting surfaces and when used to treat drinking water. [31] [32]
A weak solution of 2% household bleach in warm water is typical for sanitizing smooth surfaces before the brewing of beer or wine.[ citation needed ]
US government regulations (21 CFR 178 Subpart C) allow food processing equipment and food contact surfaces to be sanitized with solutions containing bleach, provided that the solution is allowed to drain adequately before contact with food and that the solutions do not exceed 200 parts per million (ppm) available chlorine (for example, one tablespoon of typical household bleach containing 5.25% sodium hypochlorite, per gallon of water).
A 1-in-47 dilution of household bleach with water (1 part bleach to 47 parts water: e.g. one teaspoon of bleach in a cup of water, or 21 ml per litre, or 1/3 cup of bleach in a gallon of water) is effective against many bacteria and some viruses in homes. [33] Even "scientific-grade", commercially produced disinfection solutions such as Virocidin-X usually have sodium hypochlorite as their sole active ingredient, though they also contain surfactants (to prevent beading) and fragrances (to conceal the bleach smell). [34]
See hypochlorous acid for a discussion of the mechanism for disinfectant action.
An oral rinse with a 0.05% dilute solution of household bleach is shown to treat gingivitis. [35]
Color-safe bleach is a solution with hydrogen peroxide as the active ingredient (for stain removal) rather than sodium hypochlorite or chlorine. [36] It also has chemicals[ which? ] in it that help brighten colors. [37] Though hydrogen peroxide is used for sterilization purposes and water treatment, its ability to disinfect laundry is limited because the concentration of hydrogen peroxide in laundry products is lower than what is used in other applications. [37]
The safety of bleaches depends on the compounds present, and their concentration. [38] Generally speaking, the ingestion of bleaches will cause damage to the esophagus and stomach, possibly leading to death. On contact with the skin or eyes, it causes irritation, drying, and potentially burns. Inhalation of bleach fumes can cause mild irritation of the upper airways. [38] Personal protective equipment should always be used when using bleach.
Bleach should never be mixed with vinegar or other acids, as this will create highly toxic chlorine gas, which can cause severe burns internally and externally. [39] [40] [41] [42] Mixing bleach with ammonia similarly produces chloramine gas, which can burn the lungs. [39] [40] [42] Mixing bleach with rubbing alcohol or acetone makes chloroform, [43] while mixing with hydrogen peroxide results in an exothermic and potentially explosive chemical reaction that releases oxygen. [44]
This article appears to be slanted towards recent events.(June 2024) |
Miracle Mineral Supplement (MMS), also promoted as "Master Mineral Solution" or "Chlorine Dioxide Solution" or CDS, [45] to evade restrictions by online retail platforms, is a bleach solution that has been fraudulently promoted as a cure-all since 2006. [46] Its main active ingredient is sodium chlorite, which is "activated" with citric acid to form chlorine dioxide. In an attempt to evade health regulations, its inventor, Jim Humble, a former Scientologist, founded the Genesis II Church of Health and Healing, which considers MMS as its sacrament. [47] [48]
Chlorine is a chemical element; it has symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is a yellow-green gas at room temperature. It is an extremely reactive element and a strong oxidising agent: among the elements, it has the highest electron affinity and the third-highest electronegativity on the revised Pauling scale, behind only oxygen and fluorine.
Hydrogen peroxide is a chemical compound with the formula H2O2. In its pure form, it is a very pale blue liquid that is slightly more viscous than water. It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution in water for consumer use and in higher concentrations for industrial use. Concentrated hydrogen peroxide, or "high-test peroxide", decomposes explosively when heated and has been used as both a monopropellant and an oxidizer in rocketry.
Sodium hypochlorite is an alkaline inorganic chemical compound with the formula NaOCl. It is commonly known in a dilute aqueous solution as bleach or chlorine bleach. It is the sodium salt of hypochlorous acid, consisting of sodium cations and hypochlorite anions.
Sodium percarbonate or sodium carbonate peroxide is a chemical substance with formula Na2H3CO6. It is an adduct of sodium carbonate and hydrogen peroxide whose formula is more properly written as 2 Na2CO3 · 3 H2O2. It is a colorless, crystalline, hygroscopic and water-soluble solid. It is sometimes abbreviated as SPC. It contains 32.5% by weight of hydrogen peroxide.
Chlorine dioxide is a chemical compound with the formula ClO2 that exists as yellowish-green gas above 11 °C, a reddish-brown liquid between 11 °C and −59 °C, and as bright orange crystals below −59 °C. It is usually handled as an aqueous solution. It is commonly used as a bleach. More recent developments have extended its applications in food processing and as a disinfectant.
A disinfectant is a chemical substance or compound used to inactivate or destroy microorganisms on inert surfaces. Disinfection does not necessarily kill all microorganisms, especially resistant bacterial spores; it is less effective than sterilization, which is an extreme physical or chemical process that kills all types of life. Disinfectants are generally distinguished from other antimicrobial agents such as antibiotics, which destroy microorganisms within the body, and antiseptics, which destroy microorganisms on living tissue. Disinfectants are also different from biocides—the latter are intended to destroy all forms of life, not just microorganisms. Disinfectants work by destroying the cell wall of microbes or interfering with their metabolism. It is also a form of decontamination, and can be defined as the process whereby physical or chemical methods are used to reduce the amount of pathogenic microorganisms on a surface.
Hypochlorous acid is an inorganic compound with the chemical formula ClOH, also written as HClO, HOCl, or ClHO. Its structure is H−O−Cl. It is an acid that forms when chlorine dissolves in water, and itself partially dissociates, forming a hypochlorite anion, ClO−. HClO and ClO− are oxidizers, and the primary disinfection agents of chlorine solutions. HClO cannot be isolated from these solutions due to rapid equilibration with its precursor, chlorine.
In chemistry, hypochlorite, or chloroxide is an anion with the chemical formula ClO−. It combines with a number of cations to form hypochlorite salts. Common examples include sodium hypochlorite and calcium hypochlorite. The Cl-O distance in ClO− is 1.69 Å.
Sodium chlorate is an inorganic compound with the chemical formula NaClO3. It is a white crystalline powder that is readily soluble in water. It is hygroscopic. It decomposes above 300 °C to release oxygen and leaves sodium chloride. Several hundred million tons are produced annually, mainly for applications in bleaching pulp to produce high brightness paper.
Calcium hypochlorite is an inorganic compound with chemical formula Ca(ClO)2, also written as Ca(OCl)2. It is a white solid, although commercial samples appear yellow. It strongly smells of chlorine, owing to its slow decomposition in moist air. This compound is relatively stable as a solid and solution and has greater available chlorine than sodium hypochlorite. "Pure" samples have 99.2% active chlorine. Given common industrial purity, an active chlorine content of 65-70% is typical. It is the main active ingredient of commercial products called bleaching powder, used for water treatment and as a bleaching agent.
Sodium perborate is chemical compound whose chemical formula may be written NaH2BO4, Na2H4B2O8, or, more properly, [Na+]2[B2O4(OH)4]2−. Its name is sometimes abbreviated as PBS.
An antichlor is a substance used to decompose residual hypochlorite or chlorine after chlorine-based bleaching, in order to prevent ongoing reactions with, and therefore damage to, the material that has been bleached. Antichlors include sodium bisulfite, potassium bisulfite, sodium metabisulfite, sodium thiosulfate, and hydrogen peroxide.
Bleaching of wood pulp is the chemical processing of wood pulp to lighten its color and whiten the pulp. The primary product of wood pulp is paper, for which whiteness is an important characteristic. These processes and chemistry are also applicable to the bleaching of non-wood pulps, such as those made from bamboo or kenaf.
Cleaning agents or hard-surface cleaners are substances used to remove dirt, including dust, stains, foul odors, and clutter on surfaces. Purposes of cleaning agents include health, beauty, removing offensive odors, and avoiding the spread of dirt and contaminants to oneself and others. Some cleaning agents can kill bacteria and clean at the same time. Others, called degreasers, contain organic solvents to help dissolve oils and fats.
Water chlorination is the process of adding chlorine or chlorine compounds such as sodium hypochlorite to water. This method is used to kill bacteria, viruses and other microbes in water. In particular, chlorination is used to prevent the spread of waterborne diseases such as cholera, dysentery, and typhoid.
Potassium hypochlorite is a chemical compound with the chemical formula KOCl, also written as KClO. It is the potassium salt of hypochlorous acid. It consists of potassium cations and hypochlorite anions. It is used in variable concentrations, often diluted in water solution. Its aqueous solutions are colorless liquids that have a strong chlorine smell. It is used as a biocide and disinfectant.
A mixed oxidant solution (MOS) is a type of disinfectant that has many uses including disinfecting, sterilizing, and eliminating pathogenic microorganisms in water. An MOS may have advantages such as a higher disinfecting power, stable residual chlorine in water, elimination of biofilm, and safety. The main components of an MOS are chlorine and its derivatives, which are produced by electrolysis of sodium chloride. It may also contain high amounts of hydroxy radicals, chlorine dioxide, dissolved ozone, hydrogen peroxide and oxygen from which the name "mixed oxidant" is derived.
Chlorine-releasing compounds, also known as chlorine base compounds, is jargon to describe certain chlorine-containing substances that are used as disinfectants and bleaches. They include the following chemicals: sodium hypochlorite, chloramine, halazone, and sodium dichloroisocyanurate. They are widely used to disinfect water and medical equipment, and surface areas as well as bleaching materials such as cloth. The presence of organic matter can make them less effective as disinfectants. They come as a liquid solution, or as a powder that is mixed with water before use.
A peroxide-based bleach or simply peroxide bleach is any bleach product that is based on the peroxide chemical group, namely two oxygen atoms connected by a single bond, (–O–O–). This bond is fairly weak and is often broken in chemical reactions of peroxides, giving rise to very reactive oxygen species, which are the active agents of the bleach.
Liquid bleach, often called just bleach, is a common chemical household product that consists of a dilute solution of sodium hypochlorite and other secondary ingredients. It is a chlorine releasing bleaching agent widely used to whiten clothes and remove stains, as a disinfectant to kill germs, and for several other uses.