Dry cleaning

Last updated
A dry-cleaner in East Germany, 1975 Bundesarchiv Bild 183-P0226-0010, Dommitzsch-Trossin, Blick in die Reinigung.jpg
A dry-cleaner in East Germany, 1975

Dry cleaning is any cleaning process for clothing and textiles using a solvent other than water.

Contents

Dry cleaning still involves liquid, but clothes are instead soaked in a water-free liquid solvent (usually non-polar, as opposed to water which is a polar solvent). Tetrachloroethylene (perchloroethylene), known in the industry as "perc", is the most widely used solvent. Alternative solvents are 1-bromopropane and hydrocarbons. [1]

Most natural fibers can be washed in water but some synthetics (e.g., viscose, lyocell, modal, and cupro) react poorly with water and should be dry cleaned if possible. [2]

History

Italian dry cleaning machine used in France in the 1960s Donini dry cleaning machines (Bologna) 3.jpg
Italian dry cleaning machine used in France in the 1960s

The ancient Greeks and Romans had some waterless methods to clean textiles, involving the use of powdered chemicals and absorbent clay (fuller's earth).[ citation needed ] By the 1700s, the French were using turpentine-based solvents for specialized cleaning.[ citation needed ]

Modern solvent-based dry cleaning may have originated in 1821 with American entrepreneur Thomas L. Jennings. Jennings referred to his method as "dry scouring". [3]

French dye-works operator Jean Baptiste Jolly [4] [lower-alpha 1] developed his own method using kerosene and gasoline to clean fabrics. [4] He opened the first dry cleaning service in Paris in 1845. [6]

Flammability concerns led William Joseph Stoddard, a dry cleaner from Atlanta, to develop in 1924 Stoddard solvent (white spirit) as a slightly less flammable alternative to gasoline-based solvents.

The use of highly flammable petroleum solvents caused many fires and explosions, resulting in government regulation of dry cleaners.

Shift to chlorinated solvents

After World War I, dry cleaners began using chlorinated solvents. These solvents were much less flammable than petroleum solvents and had improved cleaning power.[ citation needed ] Early solvents were carbon tetrachloride and trichloroethylene (TCE), but they gradually were phased out as their adverse health effects became more known. TCE may still occasionally be used for spot cleaning of difficult stains.

By the mid-1930s, the dry cleaning industry had started to use tetrachloroethylene (also called perchloroethylene or PCE) as the solvent. It has excellent cleaning power and is nonflammable and compatible with most garments. Because it is stable, tetrachloroethylene is readily recycled, but it is persistent if released into the environment. [1]

Infrastructure

From the customer's perspective, dry cleaning businesses are either "plants" or "drop shops". The former does on-site cleaning, while a drop shop receives garments from customers, sends them to a large plant, and then has the cleaned garments returned to the shop for pickup by the customer. The latter setup minimized the risk of fire or dangerous fumes created by the cleaning process. At the time, dry cleaning had been accomplished by using two separate machines—one for the cleaning process and the second to remove the solvent from the garments.

Machines of this era were described as "vented"; their drying exhausts were expelled into the atmosphere, the same as many modern tumble-dryer exhausts. This contributed to environmental contamination, and much potentially reusable solvent was lost to the atmosphere. Today, much stricter controls on solvent emissions have ensured that all dry cleaning machines in the Western world are fully enclosed, and no solvent fumes are vented to the atmosphere.[ citation needed ] In enclosed machines, solvent extracted during the drying process is recovered and purified by distillation, so it can be reused to clean further loads or safely disposed of. Most modern enclosed machines also incorporate a computer-controlled drying sensor, which automatically senses when all detectable traces of PCE have been removed. This system ensures that only small amounts of PCE fumes are released at the end of the cycle.

Mechanism

Structure of cellulose, the main constituent of cotton. The many OH groups bind water, leading to swelling of the fabric and leading to wrinkling, which is minimized when these materials are treated with tetrachloroethylene or other dry cleaning solvents. Cellulose Sessel.svg
Structure of cellulose, the main constituent of cotton. The many OH groups bind water, leading to swelling of the fabric and leading to wrinkling, which is minimized when these materials are treated with tetrachloroethylene or other dry cleaning solvents.

In terms of mechanism, dry cleaning selectively solubilizes stains on the article. The solvents are non-polar and tend to selectively extract many compounds that cause stains. These stains would otherwise only dissolve in aqueous detergent mixtures at high temperatures, potentially damaging delicate fabrics.

Non-polar solvents are also good for some fabrics, especially natural fabrics, as the solvent does not interact with any polar groups within the fabric. Water binds to these polar groups which results in the swelling and stretching of proteins within fibers during laundering. Also, the binding of water molecules interferes with weak attractions within the fiber, resulting in the loss of the fiber's original shape. After the laundry cycle, water molecules will evaporate. However, the original shape of the fibers has already been distorted and this commonly results in shrinkage. Non-polar solvents prevent this interaction, protecting more delicate fabrics.

The usage of an effective solvent coupled with mechanical friction from tumbling effectively removes stains.

Process

A modern dry cleaning machine with touchscreen and SPS control. Manufacturer: EazyClean, type EC124. Photo taken prior to installation. EazyClean EC124 dry cleaning machine.jpg
A modern dry cleaning machine with touchscreen and SPS control. Manufacturer: EazyClean, type EC124. Photo taken prior to installation.
Series 3 dry cleaning machine with PLC control. Manufacturer: BOWE Textile Cleaning; Germany. Drycleanmachine.JPG
Series 3 dry cleaning machine with PLC control. Manufacturer: BÖWE Textile Cleaning; Germany.
Many dry cleaners place cleaned clothes inside thin clear plastic garment bags. Dry clean rack.jpg
Many dry cleaners place cleaned clothes inside thin clear plastic garment bags.

A dry cleaning machine is similar to a combination of a domestic washing machine and clothes dryer. Garments are placed in the washing or extraction chamber (referred to as the "basket" or "drum"), which constitutes the core of the machine. The washing chamber contains a horizontal-axis, perforated drum that rotates within an outer shell. The shell holds the solvent while the rotating drum holds the garment load. The basket capacity is between about 10 and 40 kilograms (22 and 88 lb).[ citation needed ]

During the wash cycle, the chamber is filled approximately one-third full of solvent and begins to rotate, agitating the clothing. The solvent temperature is maintained at 30 °C (86 °F) or lower, as a higher temperature may damage it. During the wash cycle, the solvent in the chamber (commonly known as the "cage" or "tackle box") is passed through a filtration chamber and then fed back into the "cage". This is known as the cycle, and is continued for the wash duration. The solvent is then removed and sent to a distillation unit consisting of a boiler and condenser. The condensed solvent is fed into a separator unit where any remaining water is separated from the solvent, and the refined solvent fed into the clean solvent tank. The ideal flow rate is roughly 8 liters of solvent per kilogram of garments per minute (very approximately one gallon per pound of garments), depending on the size of the machine.

A typical wash cycle lasts for 8–15 minutes depending on the type of garments and degree of soiling. During the first three minutes, solvent-soluble soils dissolve into the perchloroethylene and loose, insoluble soil comes off. It takes 10–12 minutes after the loose soil has come off to remove any ground-in insoluble soil from garments. Machines using hydrocarbon solvents require a wash cycle of at least 25 minutes because of the much slower rate of solvation of solvent-soluble soils. A dry cleaning surfactant "soap" may also be added.

At the end of the wash cycle, the machine starts a rinse cycle where the garment load is rinsed with freshly distilled solvent dispensed from the solvent tank. This pure solvent rinse prevents discoloration caused by soil particles being deposited back into the garment from the "dirty" working solvent.

After the rinse cycle, the machine begins the extraction process, which recovers the solvent for reuse. Modern machines recover approximately 99.99% of the solvent employed. The extraction cycle begins by draining the solvent from the washing chamber and accelerating the basket to 350–450  rpm, causing much of the solvent to spin free of the fabric. Until this time, the cleaning is done in normal temperature, as the solvent is never heated during dry cleaning process. When no more solvent can be spun out, the machine starts the drying cycle.

During the drying cycle, the garments are tumbled in a stream of warm air (60–63 °C/140–145 °F) that circulates throughout the basket, evaporating traces of solvent left after the spin cycle. The air temperature is controlled to prevent heat damage to the garments. The exhausted warm air from the machine then passes through a chiller unit where solvent vapors are condensed and returned to the distilled solvent tank. Modern dry cleaning machines use a closed-loop system in which the chilled air is reheated and recirculated. This results in high solvent recovery rates and reduced air pollution. In the early days of dry cleaning, large amounts of perchloroethylene were vented to the atmosphere because it was regarded as cheap and believed to be harmless.

After the drying cycle is complete, a deodorizing (aeration) cycle cools the garments and removes further traces of solvent by circulating cool outside air over the garments and then through a vapor recovery filter made from activated carbon and polymer resins. After the aeration cycle, the garments are clean and ready for pressing and finishing.

Solvent reprocessing

Solvent reprocessing machinery (Germany) Pelzreinigung - Multimatic II a.jpg
Solvent reprocessing machinery (Germany)
A Firbimatic Saver Series. This machine uses activated clay filtration instead of distillation. It uses much less energy than conventional methods. Saver40.jpg
A Firbimatic Saver Series. This machine uses activated clay filtration instead of distillation. It uses much less energy than conventional methods.

Working solvent from the washing chamber passes through several filtration steps before it is returned to the washing chamber. The first step is a button trap, which prevents small objects such as lint, fasteners, buttons, and coins from entering the solvent pump.

Over time, a thin layer of filter cake (called "muck") accumulates on the lint filter. The muck is removed regularly (commonly once per day) and then processed to recover solvent trapped in the muck. Many machines use "spin disk filters", which remove the muck from the filter by centrifugal force while it is back washed with solvent.

After the lint filter, the solvent passes through an absorptive cartridge filter. This filter, which contains activated clays and activated charcoal, removes fine insoluble soil and non-volatile residues, along with dyes from the solvent. Finally, the solvent passes through a polishing filter, which removes any contaminants not previously removed. The clean solvent is then returned to the working solvent tank.

"Cooked powder residue" is the name for the waste material generated by cooking down or distilling muck. It will contain residual solvent, powdered filter material (diatomite), carbon, non-volatile residues, lint, dyes, grease, soils, and water. The waste sludge or solid residue from the still contains residual solvent, water, soils, carbon, and other non-volatile residues. Used filters are another form of waste, as is waste water, which are also subject to regulation by the United States Environmental Protection Agency (US EPA) and local authorities. [7]

To enhance cleaning power, small amounts of detergent (0.5–1.5%) are added to the working solvent, and are essential to its functionality. These detergents emulsify hydrophobic soils and keep soil from redepositing on garments. Depending on the machine's design, either an anionic or a cationic detergent is used.

Garment compatibility

Garments should be carefully checked for foreign objects before being placed in the machine. Items such as plastic pens may dissolve in the solvent bath, damaging the entire batch of textiles. Certain textile dyes are "loose" and will shed dye during solvent immersion.

Fragile items, such as feather bedspreads or tasseled rugs or hangings, may be protected by enclosing them in a loose mesh bag. The density of perchloroethylene is around 1.62 g/cm3 at room temperature (62% heavier than water), and the sheer weight of absorbed solvent may cause the textile to fail under typical forces during the spin extraction cycle, unless the mesh bag provides mechanical support.

Not all stains can be removed by dry cleaning. Some need to be treated with spotting solvents sometimes by steam jet or by soaking in special stain-remover liquids before garments are washed or dry cleaned. Also, garments which have been stored in soiled condition for a long time are difficult to bring back to their original color and texture, since irreversible chemical reactions (such as oxidation) may occur over time.

Care symbols

The international GINETEX laundry symbol for dry cleaning is a circle. It may have the letter "P" inside it to indicate perchloroethylene solvent, or the letter "F" to indicate a flammable solvent (German: Feuergefährliches Schwerbenzin). A bar underneath the circle indicates that only mild cleaning processes are recommended. A crossed-out empty circle indicates that an item should not be dry cleaned at all. [8]

Solvents used

Perchloroethylene

Perchloroethylene is the main solvent used in dry cleaning Tetrachloroethylene.svg
Perchloroethylene is the main solvent used in dry cleaning

Perchloroethylene (PCE or "perc", tetrachloroethylene) has been in use since the 1930s. PCE is the most common solvent, the "standard" for cleaning performance. It is a highly effective cleaning solvent, and it is thermally stable, recyclable, and has low toxicity and a pleasant smell. PCE is recycled by distillation at its boiling point (121 °C).

The solvent can cause color bleeding/loss, especially at higher temperatures. In some cases it may damage special trims, buttons and beads on some garments. It is better for oil-based stains (which account for about 10% of stains)[ citation needed ] than more common water-soluble stains (coffee, wine, blood, etc.).

The toxicity of perchloroethylene is "moderate to low" and "reports of human injury are uncommon despite its wide usage in dry cleaning and degreasing". [9] Tetrachloroethylene is classified as "probably carcinogenic to humans" (Group 2A) by the International Agency for Research on Cancer (IARC). There is a possibility that it is carcinogenic to humans, but the evidence is limited since most of the evaluated dry-cleaners had heavy smoking and drinking habits. [10] The exposure to tetrachloroethylene in a typical dry cleaner is considered far below the levels required to cause any risk. [11]

It is estimated that 50% to 70% of dry cleaners in the US were using perc as of 2012. [7] Alternative solvents are available, but these may require major changes in equipment, procedures, and operator training. [7] Flammable solvents may require installation of expensive fire-suppression systems. [7]

Because perc has been the longtime de facto standard solvent for dry cleaning, there is considerable interest in finding a "drop-in" substitute solvent which could be used with minimal changes to existing equipment and procedures. [7]

High flash hydrocarbons

A modern dry cleaning machine for use with various solvents Union K Series Dry Cleaning Machine.jpg
A modern dry cleaning machine for use with various solvents

High flash hydrocarbons, characterized as having a flash point higher than 60 °C (140 °F), are considered to be safer than traditional hydrocarbon solvents. [7] :18–19 Examples include Exxon-Mobil's DF-2000 or Chevron Phillips' EcoSolv, and Pure Dry. These petroleum-based solvents are less aggressive but also less effective than PCE. Although hydrocarbons are combustible, risk of fire or explosion can be minimized when they are used properly; a fire-suppression system may also be required. Hydrocarbons are considered to be volatile organic compound (VOC) pollutants. [7] :18–19 Hydrocarbons retain about 10-12% of the market.[ citation needed ]

Trichloroethylene

Trichloroethylene (TCE) is more aggressive than PCE but is very rarely used today. With superior degreasing properties, it was often used for industrial workwear/overalls cleaning in the past. It is chemically related to tetrachloroethylene. TCE is classified as carcinogenic to humans by the United States Environmental Protection Agency. [12]

Supercritical CO2

Supercritical CO2 is an alternative to PCE; however, it is inferior in removing some forms of grime. [13] [7] Additive surfactants improve the efficacy of CO2. [14] Carbon dioxide is almost entirely nontoxic (but is an asphyxiant risk in high concentrations). [7]

The CO2 dry cleaning process involves charging a sealed chamber which has been loaded with clothes, using gaseous carbon dioxide from a storage vessel to approximately 200 to 300 psi (14 to 21 bar) of pressure. This step in the process is initiated as a precaution to avoid thermal shock to the cleaning chamber. Liquid carbon dioxide is then pumped into the cleaning chamber from a separate storage vessel by a hydraulic or electrically-driven pump (which preferably has dual pistons). The pump increases the pressure of the liquid carbon dioxide to approximately 900 to 1,500 psi (62 to 103 bar). A separate sub-cooler reduces the temperature of the carbon dioxide by 2 to 3 °C (3.6 to 5.4 °F) below the boiling point, in an effort to prevent cavitation which could lead to premature degradation of the pump. [15]

Consumer Reports rated supercritical CO2 superior to conventional methods, but the Drycleaning and Laundry Institute commented on its "fairly low cleaning ability" in a 2007 report. [16] Supercritical CO2 is a mild solvent overall, which lowers its ability to aggressively attack stains.

One deficiency with supercritical CO2 is that its electrical conductivity is low. As mentioned in the Mechanisms section, dry cleaning utilizes both chemical and mechanical properties to remove stains. When solvent interacts with the fabric's surface, the friction dislocates dirt. At the same time, the friction also builds up an electrical charge. Fabrics are very poor conductors, but usually this build-up of static electricity is dissipated through the solvent. This discharge does not occur in liquid carbon dioxide, and the build-up of an electrical charge on the surface of the fabric attracts the dirt back on to the surface, diminishing the cleaning efficiency.[ citation needed ]

To compensate for the poor solubility and conductivity of supercritical carbon dioxide, research has focused on additives. For increased solubility, 2-propanol has shown increased cleaning effects for liquid carbon dioxide, as it increases the ability of the solvent to dissolve polar compounds. [17]

Machinery for use of supercritical CO2 is expensive up to $90,000 more than a PCE machine, making affordability difficult for small businesses. Some cleaners with these machines keep traditional machines on-site for more-heavily-soiled textiles, but others find plant-derived enzymes to be equally effective and more environmentally sustainable.

Other solvents: niche, emerging, etc.

For decades, efforts have been made to replace PCE. These alternatives have not proven popular thus far:

Historical

See also

Notes

  1. In some sources incorrectly [5] referred to as "Jolly-Belin"

Related Research Articles

<span class="mw-page-title-main">Dry ice</span> Solid carbon dioxide

Dry ice colloquially means the solid form of carbon dioxide. It is commonly used for temporary refrigeration as CO2 does not have a liquid state at normal atmospheric pressure and sublimes directly from the solid state to the gas state. It is used primarily as a cooling agent, but is also used in fog machines at theatres for dramatic effects. Its advantages include lower temperature than that of water ice and not leaving any residue (other than incidental frost from moisture in the atmosphere). It is useful for preserving frozen foods (such as ice cream) where mechanical cooling is unavailable.

<span class="mw-page-title-main">Laundry</span> Washing of clothing and other textiles

Laundry is the washing of clothing and other textiles, and, more broadly, their drying and ironing as well. Laundry has been part of history since humans began to wear clothes, so the methods by which different cultures have dealt with this universal human need are of interest to several branches of scholarship.

<span class="mw-page-title-main">Laundry symbol</span> Pictograms providing clothing care recommendations

A laundry symbol, also called a care symbol, is a pictogram indicating the manufacturer's suggestions as to methods of washing, drying, dry-cleaning and ironing clothing. Such symbols are written on labels, known as care labels or care tags, attached to clothing to indicate how a particular item should best be cleaned. While there are internationally recognized standards for the care labels and pictograms, their exact use and form differ by region. In some standards, pictograms coexist with or are complemented by written instructions.

<span class="mw-page-title-main">Carbon tetrachloride</span> Chemical compound

Carbon tetrachloride, also known by many other names (such as carbon tet for short and tetrachloromethane, also recognised by the IUPAC) is a chemical compound with the chemical formula CCl4. It is a non-flammable, dense, colourless liquid with a "sweet" chloroform-like odour that can be detected at low levels. It was formerly widely used in fire extinguishers, as a precursor to refrigerants and as a cleaning agent, but has since been phased out because of environmental and safety concerns. Exposure to high concentrations of carbon tetrachloride can affect the central nervous system and degenerate the liver and kidneys. Prolonged exposure can be fatal.

<span class="mw-page-title-main">Tetrachloroethylene</span> Chemical compound in very wide use

Tetrachloroethylene, also known under the systematic name tetrachloroethene, or perchloroethylene, and abbreviations such as "perc", and "PCE", is a chlorocarbon with the formula Cl2C=CCl2. It is a colorless liquid widely used for dry cleaning of fabrics, hence it is sometimes called "dry-cleaning fluid". It also has its uses as an effective automotive brake cleaner. It has a mild sweet, sharp odor, detectable by most people at a concentration of 50 ppm.

<span class="mw-page-title-main">Trichloroethylene</span> C2HCl3, widely used industrial solvent

Trichloroethylene (TCE) is a halocarbon with the formula C2HCl3, commonly used as an industrial degreasing solvent. It is a clear, colourless, non-flammable, volatile liquid with a chloroform-like pleasant mild smell and sweet taste. Its IUPAC name is trichloroethene. Trichloroethylene has been sold under a variety of trade names. Industrial abbreviations include TCE, trichlor, Trike, Tricky and tri. Under the trade names Trimar and Trilene, it was used as a volatile anesthetic and as an inhaled obstetrical analgesic. It should not be confused with the similar 1,1,1-trichloroethane, which is commonly known as chlorothene.

A supercritical fluid (SCF) is any substance at a temperature and pressure above its critical point, where distinct liquid and gas phases do not exist, but below the pressure required to compress it into a solid. It can effuse through porous solids like a gas, overcoming the mass transfer limitations that slow liquid transport through such materials. SCF are superior to gases in their ability to dissolve materials like liquids or solids. Also, near the critical point, small changes in pressure or temperature result in large changes in density, allowing many properties of a supercritical fluid to be "fine-tuned".

<span class="mw-page-title-main">Wet cleaning</span> Method of laundry professional cleaning that avoids the use of chemical solvents

Wet cleaning refers to methods of professional cleaning that, in contrast to traditional dry cleaning, avoids the use of chemical solvents, the most common of which is tetrachloroethylene. Environmental groups and the United States Environmental Protection Agency (EPA) have indicated that such alternative "wet cleaning" methods are better for the environment than perc, and proponents of wet cleaning state that these methods can be used without shrinking or otherwise damaging garments that typically require dry cleaning.

<span class="mw-page-title-main">Household chemicals</span>

Household chemicals are non-food chemicals that are commonly found and used in and around the average household. They are a type of consumer goods, designed particularly to assist cleaning, house and yard maintenance, cooking, pest control and general hygiene purposes often stored in the kitchen or garage.

<span class="mw-page-title-main">Supercritical carbon dioxide</span> Carbon dioxide above its critical point

Supercritical carbon dioxide is a fluid state of carbon dioxide where it is held at or above its critical temperature and critical pressure.

<span class="mw-page-title-main">Ultrasonic cleaning</span> Method of cleaning using ultrasound

Ultrasonic cleaning is a process that uses ultrasound to agitate a fluid, with a cleaning effect. Ultrasonic cleaners come in a variety of sizes, from small desktop units with an internal volume of less than 0.5 litres (0.13 US gal), to large industrial units with volumes approaching 1,000 litres.

<span class="mw-page-title-main">Parts cleaning</span>

Parts cleaning is a step in various industrial processes, either as preparation for surface finishing or to safeguard delicate components. One such process, electroplating, is particularly sensitive to part cleanliness, as even thin layers of oil can hinder coating adhesion.

Pemaco is a former chemical mixing company and facility located on the Los Angeles River in Maywood, a small city in southeastern Los Angeles County, California.

<span class="mw-page-title-main">Pentachloroethane</span> Chemical compound

Pentachloroethane is a chemical compound of chlorine, hydrogen, and carbon with the chemical formula C2HCl5. It is a colourless non-flammable liquid that is used as a solvent for oil and grease, in metal cleaning, and in the separation of coal from impurities.

<span class="mw-page-title-main">Carbon dioxide cleaning</span> Family of methods for parts cleaning and sterilization

Carbon dioxide cleaning (CO2 cleaning) comprises a family of methods for parts cleaning and sterilization, using carbon dioxide in its various phases. Due to being non-destructive, non-abrasive, and residue-free, it is often preferred for use on delicate surfaces. CO2 cleaning has found application in the aerospace, automotive, electronics, medical, and other industries. Carbon dioxide snow cleaning has been used to remove particles and organic residues from metals, polymers, ceramics, glasses, and other materials, and from surfaces including hard drives and optical surfaces.

Adsorbable organic halides (AOX) is a measure of the organic halogen load at a sampling site such as soil from a land fill, water, or sewage waste. The procedure measures chlorine, bromine, and iodine as equivalent halogens, but does not measure fluorine levels in the sample.

The Rockaway Borough Well Field is a Superfund site that came into place in 1981 after the soil was suspected of being contaminated with toxic chemicals. The site is located in Rockaway, Morris County, New Jersey. It was first found to be an official Superfund site after it was discovered that tetrachloroethene (PCE) and trichloroethylene (TCE) were contaminating the soil. Studies suspected that the chemicals were coming from the area of two companies in the town of Rockaway. In 1985, the residents of Rockaway were advised not to drink the tap water and the National Guard had to come and supply water supplies for the community. The town soon installed a water filter system in order to try to reduce the amount of pollution in the water. After finding that the system was not effective, the NJDEP came to the scene to investigate the soil. NJDEP found that the soil tested positive with chemicals and from there the EPA were contacted. The EPA found chemicals in different areas of the borough and found that the soil was contaminated and began to install a groundwater treatment system that functioned to purify the ground of chemicals. The system was soon pumping up to 900,000 gallons of water from the boroughs wells. Today, the pump is still functioning and has since reduced the amount of chemicals and the chance of pollution in the water to appear again. The final project to completely purify the water is still in production.

<span class="mw-page-title-main">Brake cleaner</span>

Brake cleaner, often also called parts cleaner, is a mostly colorless cleaning agent, mainly used for cleaning the brake disks, the engine compartment and underfloor of motor vehicles. An important feature is that the brake cleaner leaves no residue after the solvents evaporate.

Liquid carbon dioxide is the liquid state of carbon dioxide, which cannot occur under atmospheric pressure. It can only exist at a pressure above 5.1 atm, under 31.1 °C (88.0 °F) and above −56.6 °C (−69.9 °F). Low-temperature carbon dioxide is commercially used in its solid form, commonly known as "dry ice". Solid CO
2
sublimes at 194.65 K at Earth atmospheric pressure — that is, it transitions directly from solid to gas without an intermediate liquid stage. The uses and applications of liquid carbon dioxide include decaffeinating coffee, extracting virgin olive oil from olive paste, in fire extinguishers, and as a coolant.

<span class="mw-page-title-main">Fabric treatment</span>

Fabric treatments are processes that make fabric softer, or water resistant, or enhance dye penetration after they are woven. Fabric treatments get applied when the textile itself cannot add other properties. Treatments include, scrim, foam lamination, fabric protector or stain repellent, anti microbial and flame retardant.

References

  1. 1 2 Tirsell, David C. (2000). "Dry Cleaning". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a09_049. ISBN   3527306730.
  2. Hunter, Jennifer (22 May 2019). "Dry Cleaning Your Wool Sweaters? Don't Bother". The New York Times . Retrieved 30 May 2019.
  3. Johnson, Shontavia (15 February 2017). "America's always had black inventors – even when the patent system explicitly excluded them". The Conversation. Retrieved 2021-06-19.
  4. 1 2 Oladele Ogunseitan (3 May 2011). Green Health: An A-to-Z Guide. SAGE Publications. pp. 135–. ISBN   978-1-4522-6621-3.
  5. Ancliffe Prince (1965). Laundering and Cleaning: Yesterday, To-day, and To-morrow. Iliffe Technical Publications. In Britain America the discovery was for long attributed to a supposed Paris tailor by name of Jolly-Belin [...] Actually the discoverer of drycleaning was not named Jolly-Belin but Jean-Baptiste Jell
  6. New Scientist. Reed Business Information. 13 February 1986. pp. 33–. ISSN   0262-4079.[ permanent dead link ]
  7. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 "Assessment of Alternatives to Perchloroethylene for the Dry Cleaning Industry" (PDF). TURI: Toxics Use Reduction Institute. UMass Lowell. June 2012. Retrieved 2023-09-23.
  8. "Professional textile care symbols". GINETEX - Swiss Association for Textile Labelling. Archived from the original on 2013-05-28. Retrieved 2013-07-18.
  9. E.-L. Dreher; T. R. Torkelson; K. K. Beutel (2011). "Chlorethanes and Chloroethylenes". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.o06_o01. ISBN   978-3527306732.
  10. "Tetrachloroethylene (IARC Summary & Evaluation, Volume 63, 1995)". www.inchem.org.
  11. Azimi Pirsaraei, S. R.; Khavanin, A; Asilian, H; Soleimanian, A (2009). "Occupational exposure to perchloroethylene in dry-cleaning shops in Tehran, Iran". Industrial Health. 47 (2): 155–9. doi: 10.2486/indhealth.47.155 . PMID   19367044.
  12. EPA Releases Final Health Assessment for TCE September 2011. Accessed 2011-09-28.
  13. "Dry-cleaning with CO2 wins award [Science] Resource". Resource.wur.nl. 2010-10-12. Archived from the original on 2012-03-12. Retrieved 2013-03-14.
  14. Mohamed, Azmi. "How can we use carbon dioxide as a solvent?". Contemporary topics in school science. Retrieved 2016-08-29.
  15. "Liquid/supercritical carbon dioxide/dry cleaning system". 1993-12-06. Retrieved 2021-01-02.
  16. Drycleaning and Laundry Institute. "The DLI White Paper: Key Information on Industry Solvents." The Western Cleaner & Launderer, August 2007.
  17. US 5784905,Townsend, Carl W.; Chao, Sidney C.& Purer, Edna M.,"Liquid carbon dioxide cleaning system employing a static dissipating fluid",published 1998-07-28
  18. Tarantola, Andrew (16 September 2014). "There's a Better Way to Dry Clean Your Clothes". Gizmodo . Retrieved 2016-08-29.
  19. Commission Regulation (EU) 2018/35 of 10 January 2018 amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards octamethylcyclotetrasiloxane (‘D4’) and decamethylcyclopentasiloxane (‘D5’) (Text with EEA relevance. ), 2018-01-10, retrieved 2023-08-10
  20. Ceballos, Diana M.; Whittaker, Stephen G.; Lee, Eun Gyung; Roberts, Jennifer; Streicher, Robert; Nourian, Fariba; Gong, Wei; Broadwater, Kendra (2016). "Occupational exposures to new dry cleaning solvents: High-flashpoint hydrocarbons and butylal". Journal of Occupational and Environmental Hygiene. 13 (10): 759–769. doi:10.1080/15459624.2016.1177648. PMC   5511734 . PMID   27105306.
  21. "HAZARD EVALUATION 1-Bromopropane" Archived 2013-11-06 at the Wayback Machine July 2003. Accessed 2014-Jan-22
  22. "Massachusetts Chemical Fact Sheet: N-propyl bromide" (PDF). TURI: Toxics Use Reduction Institute. UMass Lowell. October 2016. Retrieved 2023-09-23.