Static electricity

Last updated
Example of the effect of static electricity on a child's hair. Static on the playground (48616367).jpg
Example of the effect of static electricity on a child's hair.

Static electricity is an imbalance of electric charges within or on the surface of a material. The charge remains until it can move away by an electric current or electrical discharge. The word "static" is used to differentiate it from current electricity, where an electric charge flows through an electrical conductor. [1]

Contents

A static electric charge can be created whenever two surfaces contact and or slide against each other and then separate. The effects of static electricity are familiar to most people because they can feel, hear, and even see sparks if the excess charge is neutralized when brought close to an electrical conductor (for example, a path to ground), or a region with an excess charge of the opposite polarity (positive or negative). The familiar phenomenon of a static shock more specifically, an electrostatic discharge  is caused by the neutralization of a charge.

Causes

Materials are made of atoms that are normally electrically neutral because they contain equal numbers of positive charges (protons in their nuclei) and negative charges (electrons in "shells" surrounding the nucleus). The phenomenon of static electricity requires a separation of positive and negative charges. When two materials are in contact, electrons may move from one material to the other, which leaves an excess of positive charge on one material, and an equal negative charge on the other. When the materials are separated they retain this charge imbalance. It is also possible for ions to be transferred.

Contact-induced charge separation

Styrofoam peanuts clinging to a cat's fur due to static electricity. This effect is also the cause of static cling in clothes. Cat demonstrating static cling with styrofoam peanuts.jpg
Styrofoam peanuts clinging to a cat's fur due to static electricity. This effect is also the cause of static cling in clothes.

Electrons or ions can be exchanged between materials on contact or when they slide against each other, which is known as the triboelectric effect and results in one material becoming positively charged and the other negatively charged. The triboelectric effect is the main cause of static electricity as observed in everyday life, and in common high-school science demonstrations involving rubbing different materials together (e.g., fur against an acrylic rod). Contact-induced charge separation causes one's hair to stand up and causes "static cling" (for example, a balloon rubbed against the hair becomes negatively charged; when near a wall, the charged balloon is attracted to positively charged particles in the wall, and can "cling" to it, suspended against gravity). [2]

Pressure-induced charge separation

Applied mechanical stress generates a electric polarization and in turn this can lead to separation of charge in many types of materials. The free carriers at the surface of a material compensate for the polarization induced by the strains. [3] [4]

Heat-induced charge separation

Heating can generate electric polarization, which in turn can lead a separation of charge in certain materials. All pyroelectric materials are also piezoelectric and do not have inversion symmetry. [5]

Charge-induced charge separation

A charged object brought close to an electrically neutral conductive object causes a separation of charge within the neutral object. This is called electrostatic induction. Charges of the same polarity are repelled and move to the side of the object away from the external charge, and charges of the opposite polarity are attracted and move to the side facing the charge. As the force due to the interaction of electric charges falls off rapidly with increasing distance, the effect of the closer (opposite polarity) charges is greater and the two objects feel a force of attraction. Careful grounding of part of an object can permanently add or remove electrons, leaving the object with a global, permanent charge.

Removal and prevention

A network card inside an antistatic bag. Antistatic bag.jpg
A network card inside an antistatic bag.
An antistatic wrist strap with crocodile clip. AntiStatic-Wrist-Guard.jpg
An antistatic wrist strap with crocodile clip.

Removing or preventing a buildup of static charge can be as simple as opening a window or using a humidifier, to increase the moisture content of the air, making the atmosphere more conductive. Air ionizers can perform the same task. [6]

Items that are particularly sensitive to static discharge may be treated with the application of an antistatic agent, which adds a conducting surface layer that ensures any excess charge is evenly distributed. Fabric softeners and dryer sheets used in washing machines and clothes dryers are an example of an antistatic agent used to prevent and remove static cling. [7]

Many semiconductor devices used in electronics are particularly sensitive to static discharge. Conductive antistatic bags are commonly used to protect such components. People who work on circuits that contain these devices often ground themselves with a conductive antistatic strap. [8] [9]

In the industrial settings such as paint or flour plants as well as in hospitals, antistatic safety boots are sometimes used to prevent a buildup of static charge due to contact with the floor. These shoes have soles with good conductivity. Anti-static shoes should not be confused with insulating shoes, which provide exactly the opposite benefit   some protection against serious electric shocks from the mains voltage. [10]

Within medical cable assemblies and lead wires, random triboelectric noise is generated when the various conductors, insulation, and fillers rub against each other as the cable is flexed during movement. Noise generated within a cable is often called handling noise or cable noise, but this type of unwanted signal is more accurately described as triboelectric noise. When measuring low-level signals, noise in cable or wire may present a problem. For example, the noise in an ECG or another medical signal may make accurate diagnosis difficult or even impossible. Keeping triboelectric noise at acceptable levels requires careful material selection, design, and processing as cable material is manufactured. [11]

Static discharge

The spark associated with static electricity is caused by electrostatic discharge, or simply static discharge, as excess charge is neutralized by a flow of charges from or to the surroundings.

The feeling of an electric shock is caused by the stimulation of nerves as the current flows through the human body. The energy stored as static electricity on an object varies depending on the size of the object and its capacitance, the voltage to which it is charged, and the dielectric constant of the surrounding medium. For modelling the effect of static discharge on sensitive electronic devices, a human being is represented as a capacitor of 100 picofarads, charged to a voltage of 4,000 to 35,000 volts. When touching an object this energy is discharged in less than a microsecond. [12] While the total energy is small, on the order of millijoules, it can still damage sensitive electronic devices. Larger objects will store more energy, which may be directly hazardous to human contact or which may give a spark that can ignite flammable gas or dust.

Lightning

Natural static discharge caused by a lightning strike Lightning strike jan 2007.jpg
Natural static discharge caused by a lightning strike
Small hairs standing up after a thunderstorm, as a result of the left over weak static electricity Hairthunderstorm.png
Small hairs standing up after a thunderstorm, as a result of the left over weak static electricity

Lightning is a dramatic natural example of static discharge. While the details are unclear and remain a subject of debate, the initial charge separation is thought to be associated with contact between ice particles within storm clouds. In general, significant charge accumulations can only persist in regions of low electrical conductivity (very few charges free to move in the surroundings), hence the flow of neutralizing charges often results from neutral atoms and molecules in the air being torn apart to form separate positive and negative charges, which travel in opposite directions as an electric current, neutralizing the original accumulation of charge. The static charge in air typically breaks down in this way at around 10,000 volts per centimeter (10 kV/cm) depending on humidity. [13] The discharge superheats the surrounding air causing the bright flash, and produces a shock wave causing the booming sound. A lightning bolt is simply a scaled-up version of the sparks seen in more domestic occurrences of static discharge. The flash occurs because the air in the discharge channel is heated to such a high temperature that it emits light by incandescence. The clap of thunder is the result of the shock wave created as the superheated air expands.

Electronic components

Many semiconductor devices used in electronics are very sensitive to the presence of static electricity and can be damaged by a static discharge. The use of an antistatic strap is mandatory for researchers manipulating nanodevices. Further precautions can be taken by taking off shoes with thick rubber soles and permanently staying with a metallic ground.

Static build-up in flowing flammable and ignitable materials

Static electricity is a major hazard when refueling an aircraft. Airbus A321-231 - British Airways - G-EUXH - EHAM (5).jpg
Static electricity is a major hazard when refueling an aircraft.

Discharge of static electricity can create severe hazards in those industries dealing with flammable substances, where a small electrical spark might ignite explosive mixtures. [14]

The flowing movement of finely powdered substances or low conductivity fluids in pipes or through mechanical agitation can build up static electricity. [15] The flow of granules of material such as sand down a plastic chute can transfer charge, which can be measured using a multimeter connected to metal foil lining the chute at intervals, and can be roughly proportional to particulate flow. [16] Dust clouds of finely powdered substances can become combustible or explosive. When there is a static discharge in a dust or vapor cloud, explosions have occurred. Among the major industrial incidents that have occurred due to static discharge are the explosion of a grain silo in southwest France, a paint plant in Thailand, a factory making fiberglass moldings in Canada, a storage tank explosion in Glenpool, Oklahoma in 2003, and a portable tank filling operation and a tank farm in Des Moines, Iowa and Valley Center, Kansas in 2007. [17] [18] [19]

The ability of a fluid to retain an electrostatic charge depends on its electrical conductivity. When low conductivity fluids flow through pipelines or are mechanically agitated, contact-induced charge separation called flow electrification occurs. [20] [21] Fluids that have low electrical conductivity (below 50 picosiemens per meter), are called accumulators. Fluids having conductivity above 50 pS/m are called non-accumulators. In non-accumulators, charges recombine as fast as they are separated and hence electrostatic charge accumulation is not significant. In the petrochemical industry, 50 pS/m is the recommended minimum value of electrical conductivity for adequate removal of charge from a fluid.

Kerosines may have conductivity ranging from less than 1 picosiemens per meter to 20 pS/m. For comparison, deionized water has a conductivity of about 10,000,000 pS/m or 10 μS/m. [22]

Transformer oil is part of the electrical insulation system of large power transformers and other electrical apparatus. Re-filling of large apparatus requires precautions against electrostatic charging of the fluid, which may damage sensitive transformer insulation.

An important concept for insulating fluids is the static relaxation time. This is similar to the time constant τ (tau) of an RC circuit. For insulating materials, it is the ratio of the static dielectric constant divided by the electrical conductivity of the material. For hydrocarbon fluids, this is sometimes approximated by dividing the number 18 by the electrical conductivity of the fluid. Thus a fluid that has an electrical conductivity of 1 pS/m has an estimated relaxation time of about 18 seconds. The excess charge in a fluid dissipates almost completely after four to five times the relaxation time, or 90 seconds for the fluid in the above example.

Charge generation increases at higher fluid velocities and larger pipe diameters, becoming quite significant in pipes 8 inches (200 mm) or larger. Static charge generation in these systems is best controlled by limiting fluid velocity. The British standard BS PD CLC/TR 50404:2003 (formerly BS-5958-Part 2) Code of Practice for Control of Undesirable Static Electricity prescribes pipe flow velocity limits. Because water content has a large impact on the fluids dielectric constant, the recommended velocity for hydrocarbon fluids containing water should be limited to 1 meter per second.

Bonding and earthing are the usual ways charge buildup can be prevented. For fluids with electrical conductivity below 10 pS/m, bonding and earthing are not adequate for charge dissipation, and anti-static additives may be required. [ citation needed ]

Fueling operations

The flowing movement of flammable liquids like gasoline inside a pipe can build up static electricity. Non-polar liquids such as gasoline, toluene, xylene, diesel, kerosene and light crude oils exhibit significant ability for charge accumulation and charge retention during high velocity flow. Electrostatic discharges can ignite the fuel vapor. [23] When the electrostatic discharge energy is high enough, it can ignite a fuel vapor and air mixture. Different fuels have different flammable limits and require different levels of electrostatic discharge energy to ignite.

Electrostatic discharge while fueling with gasoline is a present danger at gas stations. [24] Fires have also been started at airports while refueling aircraft with kerosene. New grounding technologies, the use of conducting materials, and the addition of anti-static additives help to prevent or safely dissipate the buildup of static electricity. Customers who need to fill containers at gas stations are advised to set them on the ground first so that any static buildup will dissipate without risk of fire or explosion.

The flowing movement of gases in pipes alone creates little, if any, static electricity. [25] It is envisaged that a charge generation mechanism only occurs when solid particles or liquid droplets are carried in the gas stream.

In space exploration

Due to the extremely low humidity in extraterrestrial environments, very large static charges can accumulate, causing a major hazard for the complex electronics used in space exploration vehicles. Static electricity is thought to be a particular hazard for astronauts on planned missions to the Moon and Mars. Walking over the extremely dry terrain could cause them to accumulate a significant amount of charge; reaching out to open the airlock on their return could cause a large static discharge, potentially damaging sensitive electronics. [26]

Ozone cracking

Ozone cracking in natural rubber tubing Ozone cracks in tube1.jpg
Ozone cracking in natural rubber tubing

A static discharge in the presence of air or oxygen can create ozone. Ozone can degrade rubber parts. Many elastomers are sensitive to ozone cracking. Exposure to ozone creates deep penetrative cracks in critical components like gaskets and O-rings. Fuel lines are also susceptible to the problem unless preventive action is taken. Preventive measures include adding anti-ozonants to the rubber mix, or using an ozone-resistant elastomer. Fires from cracked fuel lines have been a problem on vehicles, especially in the engine compartments where ozone can be produced by electrical equipment.

Energies involved

The energy released in a static electricity discharge may vary over a wide range. The energy in joules can be calculated from the capacitance (C) of the object and the static potential V in volts (V) by the formula E = ½CV2. [27] One experimenter estimates the capacitance of the human body as high as 400  picofarads, and a voltage of 50,000 volts, discharged e.g. during touching a charged car, creating a spark with energy of 500 millijoules. [28] Another estimate is 100–300 pF and 20,000 volts, producing a maximum energy of 60 mJ. [29] IEC 479-2:1987 states that a discharge with energy greater than 5000 mJ is a direct serious risk to human health. IEC 60065 states that consumer products cannot discharge more than 350 mJ into a person.

The maximal potential is limited to about 35–40 kV, due to corona discharge dissipating the charge at higher potentials. Potentials below 3000 volts are not typically detectable by humans. Maximal potential commonly achieved on human body range between 1 and 10 kV, though in optimal conditions as high as 20–25 kV can be reached. Low relative humidity increases the charge buildup; walking 20 feet (6 m) on vinyl floor at 15% relative humidity causes buildup of voltage up to 12 kV, while at 80% humidity the voltage is only 1.5 kV. [30]

As little as 0.2 millijoules may present an ignition hazard; such low spark energy is often below the threshold of human visual and auditory perception.

Typical ignition energies are:

The energy needed to damage most electronic devices[ specify ] is between 2 and 1000 nanojoules. [31]

A relatively small energy, often as little as 0.2–2 millijoules, is needed to ignite a flammable mixture of a fuel and air. For the common industrial hydrocarbon gases and solvents, the minimum ignition energy required for ignition of vapor–air mixture is lowest for the vapor concentration roughly in the middle between the lower explosive limit and the upper explosive limit, and rapidly increases as the concentration deviates from this optimum to either side. Aerosols of flammable liquids may be ignited well below their flash point. Generally, liquid aerosols with particle sizes below 10 micrometers behave like vapors, particle sizes above 40 micrometers behave more like flammable dusts. Typical minimal flammable concentrations of aerosols lay between 15 and 50 g/m3. Similarly, presence of foam on the surface of a flammable liquid significantly increases ignitability. Aerosol of flammable dust can be ignited as well, resulting in a dust explosion; the lower explosive limit usually lies between 50 and 1000 g/m3; finer dusts tend to be more explosive and requiring less spark energy to set off. Simultaneous presence of flammable vapors and flammable dust can significantly decrease the ignition energy; a mere 1 vol.% of propane in air can reduce the required ignition energy of dust by 100 times. Higher than normal oxygen content in atmosphere also significantly lowers the ignition energy. [32]

There are five types of electrical discharges:

See also

Related Research Articles

<span class="mw-page-title-main">Triboelectric effect</span> Charge transfer due to contact or sliding

The triboelectric effect describes electric charge transfer between two objects when they contact or slide against each other. It can occur with different materials, such as the sole of a shoe on a carpet, or between two pieces of the same material. It is ubiquitous, and occurs with differing amounts of charge transfer (tribocharge) for all solid materials. There is evidence that tribocharging can occur between combinations of solids, liquids and gases, for instance liquid flowing in a solid tube or an aircraft flying through air.

<span class="mw-page-title-main">Electrostatic discharge</span> Sudden flow of electric current between two electrically charged objects by contact

Electrostatic discharge (ESD) is a sudden and momentary flow of electric current between two differently-charged objects when brought close together or when the dielectric between them breaks down, often creating a visible spark associated with the static electricity between the objects.

<span class="mw-page-title-main">Corona discharge</span> Ionization of air around a high-voltage conductor

A corona discharge is an electrical discharge caused by the ionization of a fluid such as air surrounding a conductor carrying a high voltage. It represents a local region where the air has undergone electrical breakdown and become conductive, allowing charge to continuously leak off the conductor into the air. A corona discharge occurs at locations where the strength of the electric field around a conductor exceeds the dielectric strength of the air. It is often seen as a bluish glow in the air adjacent to pointed metal conductors carrying high voltages, and emits light by the same mechanism as a gas discharge lamp, chemiluminescence. Corona discharges can also happen in weather, such as thunderstorms, where objects like ship masts or airplane wings have a charge significantly different from the air around them.

<span class="mw-page-title-main">Lichtenberg figure</span> Branching shapes

A Lichtenberg figure, or Lichtenberg dust figure, is a branching electric discharge that sometimes appears on the surface or in the interior of insulating materials. Lichtenberg figures are often associated with the progressive deterioration of high-voltage components and equipment. The study of planar Lichtenberg figures along insulating surfaces and 3D electrical trees within insulating materials often provides engineers with valuable insights for improving the long-term reliability of high-voltage equipment. Lichtenberg figures are now known to occur on or within solids, liquids, and gases during electrical breakdown.

<span class="mw-page-title-main">Electrostatic induction</span> Separation of electric charge due to presence of other charges

Electrostatic induction, also known as "electrostatic influence" or simply "influence" in Europe and Latin America, is a redistribution of electric charge in an object that is caused by the influence of nearby charges. In the presence of a charged body, an insulated conductor develops a positive charge on one end and a negative charge on the other end. Induction was discovered by British scientist John Canton in 1753 and Swedish professor Johan Carl Wilcke in 1762. Electrostatic generators, such as the Wimshurst machine, the Van de Graaff generator and the electrophorus, use this principle. See also Stephen Gray in this context. Due to induction, the electrostatic potential (voltage) is constant at any point throughout a conductor. Electrostatic induction is also responsible for the attraction of light nonconductive objects, such as balloons, paper or styrofoam scraps, to static electric charges. Electrostatic induction laws apply in dynamic situations as far as the quasistatic approximation is valid.

<span class="mw-page-title-main">Electrical breakdown</span> Conduction of electricity through an insulator under sufficiently high voltage

In electronics, electrical breakdown or dielectric breakdown is a process that occurs when an electrically insulating material, subjected to a high enough voltage, suddenly becomes a conductor and current flows through it. All insulating materials undergo breakdown when the electric field caused by an applied voltage exceeds the material's dielectric strength. The voltage at which a given insulating object becomes conductive is called its breakdown voltage and, in addition to its dielectric strength, depends on its size and shape, and the location on the object at which the voltage is applied. Under sufficient voltage, electrical breakdown can occur within solids, liquids, or gases. However, the specific breakdown mechanisms are different for each kind of dielectric medium.

<span class="mw-page-title-main">High voltage</span> Electrical potential that is large enough to cause damage or injury

High voltage electricity refers to electrical potential large enough to cause injury or damage. In certain industries, high voltage refers to voltage above a certain threshold. Equipment and conductors that carry high voltage warrant special safety requirements and procedures.

<span class="mw-page-title-main">Electrostatic generator</span> Device that generates electrical charge on a high voltage electrode

An electrostatic generator, or electrostatic machine, is an electrical generator that produces static electricity, or electricity at high voltage and low continuous current. The knowledge of static electricity dates back to the earliest civilizations, but for millennia it remained merely an interesting and mystifying phenomenon, without a theory to explain its behavior and often confused with magnetism. By the end of the 17th century, researchers had developed practical means of generating electricity by friction, but the development of electrostatic machines did not begin in earnest until the 18th century, when they became fundamental instruments in the studies about the new science of electricity.

<span class="mw-page-title-main">Static cling</span> Attraction of light objects due to the triboelectric effect

Static cling is the tendency for light objects to stick (cling) to other objects owing to static electricity. It is common in clothing, but occurs with other items, such as the tendency of dust to be attracted to, and stick to, plastic items.

<span class="mw-page-title-main">Electrostatic precipitator</span> Filtration device

An electrostatic precipitator (ESP) is a filterless device that removes fine particles, such as dust and smoke, from a flowing gas using the force of an induced electrostatic charge minimally impeding the flow of gases through the unit.

<span class="mw-page-title-main">Atmospheric electricity</span> Electricity in planetary atmospheres

Atmospheric electricity describes the electrical charges in the Earth's atmosphere. The movement of charge between the Earth's surface, the atmosphere, and the ionosphere is known as the global atmospheric electrical circuit. Atmospheric electricity is an interdisciplinary topic with a long history, involving concepts from electrostatics, atmospheric physics, meteorology and Earth science.

An antistatic agent is a compound used for treatment of materials or their surfaces in order to reduce or eliminate buildup of static electricity. Static charge may be generated by the triboelectric effect or by a non-contact process using a high voltage power source. Static charge may be introduced on a surface as part of an in-mold label printing process.

<span class="mw-page-title-main">Kelvin water dropper</span> Type of electrostatic generator

The Kelvin water dropper, invented by Scottish scientist William Thomson in 1867, is a type of electrostatic generator. Kelvin referred to the device as his water-dropping condenser. The apparatus is variously called the Kelvin hydroelectric generator, the Kelvin electrostatic generator, or Lord Kelvin's thunderstorm. The device uses falling water to generate voltage differences by electrostatic induction occurring between interconnected, oppositely charged systems. This eventually leads to an electric arc discharging in the form of a spark. It is used in physics education to demonstrate the principles of electrostatics.

<span class="mw-page-title-main">Electric spark</span> Abrupt electrical discharge through an ionised channel

An electric spark is an abrupt electrical discharge that occurs when a sufficiently high electric field creates an ionized, electrically conductive channel through a normally-insulating medium, often air or other gases or gas mixtures. Michael Faraday described this phenomenon as "the beautiful flash of light attending the discharge of common electricity".

Body capacitance is the physical property of a human body to act as a capacitor. Like any other electrically conductive object, a human body can store electric charge if insulated. The actual amount of capacitance varies with the surroundings; it would be low when standing on top of a pole with nothing nearby, but high when leaning against an insulated, but grounded large metal surface, such as a household refrigerator, or a metal wall in a factory.

<span class="mw-page-title-main">Electrostatic-sensitive device</span> Components that can be damaged by electrostatic discharges

An electrostatic-sensitive device is any component which can be damaged by common static charges which build up on people, tools, and other non-conductors or semiconductors. ESD commonly also stands for electrostatic discharge.

<span class="mw-page-title-main">Static wick</span> Aircraft component to discharge static electricity

Static wicks, also called static dischargers or static discharge wicks, are devices used to remove static electricity from aircraft in flight. They take the form of small sticks pointing backwards from the wings, and are fitted on almost all civilian aircraft.

<span class="mw-page-title-main">Antistatic device</span> Device that reduces or inhibits electrostatic discharge

An antistatic device is any device that reduces, dampens, or otherwise inhibits electrostatic discharge, or ESD, which is the buildup or discharge of static electricity. ESD can damage electrical components such as computer hard drives, and even ignite flammable liquids and gases.

<span class="mw-page-title-main">Electrostatic discharge materials</span>

Electrostatic discharge materials are plastics that reduce static electricity to protect against damage to electrostatic-sensitive devices (ESD) or to prevent the accidental ignition of flammable liquids or gases.

References

  1. Dhogal (1986). Basic Electrical Engineering, Volume 1. Tata McGraw-Hill. p. 41. ISBN   978-0-07-451586-0.
  2. Harper, Wallace Russel (1998). Contact and frictional electrification. The Laplacian Press Series on Electrostatics. Morgan Hill, California: Laplacian Press. ISBN   978-1-885540-06-5.
  3. Fisher, L. H. (1951-02-01). "On the Representation of the Static Polarization of Rigid Dielectrics by Equivalent Charge Distributions". American Journal of Physics. 19 (2): 73–78. doi:10.1119/1.1932714. ISSN   0002-9505.
  4. Griffiths, David J. (2017-06-29). "Introduction to Electrodynamics". Higher Education from Cambridge University Press. doi:10.1017/9781108333511.008 . Retrieved 2025-01-13.
  5. Ashcroft, Neil W.; Mermin, N. David (2012). Solid state physics (Repr ed.). South Melbourne: Brooks/Cole Thomson Learning. ISBN   978-0-03-083993-1.
  6. "Ionizers and Static Eliminators". GlobalSpec. 2009. Archived from the original on 2009-02-10. Retrieved 2009-04-13.
  7. "Fabric Softener and Static". Ask a Scientist, General Science Archive. US Department of Energy. 2003. Retrieved 2009-04-13.
  8. Antistatic Bags for Parts. John Wiley and Sons. 2004. ISBN   978-0-7821-4360-7 . Retrieved 2009-04-13.{{cite book}}: |work= ignored (help)
  9. Antistatic Wrist Strap. John Wiley and Sons. 2004. ISBN   978-0-7821-4360-7 . Retrieved 2009-04-13.{{cite book}}: |work= ignored (help)
  10. "Safetoes: Safety Footwear". Safetoes. Trojan Tooling. 2004. Archived from the original on 2022-11-27. Retrieved 2009-04-13.
  11. "Triboelectric Noise in Medical Cables and Wires". 29 August 2014.
  12. Carlos Hernando Díaz, Sung-Mo Kang, Charvaka Duvvury, Modeling of electrical overstress in integrated circuits Springer, 1995 ISBN   0-7923-9505-0 page 5
  13. J. J. Lowke (1992). "Theory of electrical breakdown in air". Journal of Physics D: Applied Physics. 25 (2): 202–210. Bibcode:1992JPhD...25..202L. doi:10.1088/0022-3727/25/2/012. S2CID   250794264.
  14. Kassebaum, J. H. & Kocken, R. A. (1995). "Controlling static electricity in hazardous (Classified) locations". Industry Applications Society 42nd Annual Petroleum and Chemical Industry Conference. pp. 105–113. doi:10.1109/PCICON.1995.523945. ISBN   0-7803-2909-0. S2CID   110221915.
  15. Wagner, John P.; Clavijo, Fernando Rangel Electrostatic charge generation during impeller mixing of used transformer oil Department of Nuclear Engineering, Safety Engineering and Industrial Hygiene Program, Texas A&M University, College Station, online 21 August 2000; accessed Jan 2009 doi : 10.1016/S0304-3886(00)00019-X
  16. Downie, Neil A., Exploding Disk Cannons, Slimemobiles and 32 Other Projects for Saturday Science (Johns Hopkins University Press (2006), ISBN   978-0-8018-8506-8, chapter 33, pages 259-266 "Electric Sand"
  17. Hearn, Graham (1998). "Static electricity: concern in the pharmaceutical industry?". Pharmaceutical Science & Technology Today. 1 (7): 286–287. doi:10.1016/S1461-5347(98)00078-9.
  18. Storage Tank Explosion and Fire in Glenpool, Oklahoma April 7, 2003 National Transportation Safety Board
  19. Static Spark Ignites Flammable Liquid during Portable Tank Filling Operation Archived 2009-01-17 at the Wayback Machine Chemical Safety Board October 29, 2007
  20. Egorov, V.N. (1970). "Electrification of petroleum fuels" (PDF). Khimiya I Tekhnologiya Topliv I Masel. 6 (4): 20–25. Bibcode:1970CTFO....6..260E. doi:10.1007/BF00723571.
  21. Touchard, Gérard (2001). "Flow electrification of liquids". Journal of Electrostatics. 51–52: 440–447. doi:10.1016/S0304-3886(01)00081-X.
  22. Chevron Corporation Aviation Fuels Technical Review Archived 2009-03-19 at the Wayback Machine 2006, accessed Dec 2008
  23. Hearn, Graham Static electricity – guidance for Plant Engineers – Wolfson Electrostatics University of Southampton 2002; accessed Dec 2008
  24. "CarCare – Auto Clinic" Popular Mechanics, April 2003, p. 163.
  25. Kinzing, G.E., 'Electrostatic Effects in Pneumatic Transport: Assessment, Magnitudes and Future Direction', Journal Pipelines, 4, 95–102, 1984
  26. "NASA – Crackling Planets" . Retrieved 2021-02-23.
  27. Nomograms for capacitive electrostatic discharge risk assessment Archived 2021-03-01 at the Wayback Machine . Ece.rochester.edu. Retrieved on 2010-02-08.
  28. "High voltage safety: VandeGraaff Electrostatic Generator". amasci.com. Retrieved 2010-01-27.
  29. Index Archived 2021-02-27 at the Wayback Machine . Wolfsonelectrostatics.com. Retrieved on 2011-03-17.
  30. M. A. Kelly, G. E. Servais, T. V. Pfaffenbach An Investigation of Human Body Electrostatic Discharge, ISTFA ’93: The 19th International Symposium for Testing & Failure Analysis, Los Angeles, California, USA/15–19 November 1993.
  31. "ESD Terms". eed.gsfc.nasa.gov. Archived from the original on 2004-09-17. Retrieved 2010-01-27.
  32. Static Electricity Guidance for Plant Engineers. Graham Hearn – Wolfson Electrostatics, University of Southampton.