Magnetization

Last updated

Common symbols
M
SI unit Ampere-meter -1
In SI base units m -1A
Dimension L-1I

In classical electromagnetism, magnetization is the vector field that expresses the density of permanent or induced magnetic dipole moments in a magnetic material. Accordingly, physicists and engineers usually define magnetization as the quantity of magnetic moment per unit volume. [1] It is represented by a pseudovector M. Magnetization can be compared to electric polarization, which is the measure of the corresponding response of a material to an electric field in electrostatics.

Contents

Magnetization also describes how a material responds to an applied magnetic field as well as the way the material changes the magnetic field, and can be used to calculate the forces that result from those interactions.

The origin of the magnetic moments responsible for magnetization can be either microscopic electric currents resulting from the motion of electrons in atoms, or the spin of the electrons or the nuclei. Net magnetization results from the response of a material to an external magnetic field.

Paramagnetic materials have a weak induced magnetization in a magnetic field, which disappears when the magnetic field is removed. Ferromagnetic and ferrimagnetic materials have strong magnetization in a magnetic field, and can be magnetized to have magnetization in the absence of an external field, becoming a permanent magnet. Magnetization is not necessarily uniform within a material, but may vary between different points.

Definition

The magnetization field or M-field can be defined according to the following equation:

Where is the elementary magnetic moment and is the volume element; in other words, the M-field is the distribution of magnetic moments in the region or manifold concerned. This is better illustrated through the following relation: where m is an ordinary magnetic moment and the triple integral denotes integration over a volume. This makes the M-field completely analogous to the electric polarisation field, or P-field, used to determine the electric dipole moment p generated by a similar region or manifold with such a polarization: where is the elementary electric dipole moment.

Those definitions of P and M as a "moments per unit volume" are widely adopted, though in some cases they can lead to ambiguities and paradoxes. [1]

The M-field is measured in amperes per meter (A/m) in SI units. [2]

In Maxwell's equations

The behavior of magnetic fields (B, H), electric fields (E, D), charge density (ρ), and current density (J) is described by Maxwell's equations. The role of the magnetization is described below.

Relations between B, H, and M

The magnetization defines the auxiliary magnetic field H as

(SI)
(Gaussian system)

which is convenient for various calculations. The vacuum permeability μ0 is, approximately, ×10−7  V·s/(A·m ).

A relation between M and H exists in many materials. In diamagnets and paramagnets, the relation is usually linear:

where χ is called the volume magnetic susceptibility, and μ is called the magnetic permeability of the material. The magnetic potential energy per unit volume (i.e. magnetic energy density) of the paramagnet (or diamagnet) in the magnetic field is:

the negative gradient of which is the magnetic force on the paramagnet (or diamagnet) per unit volume (i.e. force density).

In diamagnets () and paramagnets (), usually , and therefore .

In ferromagnets there is no one-to-one correspondence between M and H because of magnetic hysteresis.

Magnetic polarization

Alternatively to the magnetization, one can define the magnetic polarization, I (often the symbol J is used, not to be confused with current density). [3]

(SI).

This is by direct analogy to the electric polarization, . The magnetic polarization thus differs from the magnetization by a factor of μ0:

(SI).

Whereas magnetization is given with the unit ampere/meter, the magnetic polarization is given with the unit tesla.

Magnetization current

When the microscopic currents induced by the magnetization (black arrows) do not balance out, bound volume currents (blue arrows) and bound surface currents (red arrows) appear in the medium. Bound currents.gif
When the microscopic currents induced by the magnetization (black arrows) do not balance out, bound volume currents (blue arrows) and bound surface currents (red arrows) appear in the medium.

The magnetization M makes a contribution to the current density J, known as the magnetization current. [4]

and for the bound surface current:

so that the total current density that enters Maxwell's equations is given by

where Jf is the electric current density of free charges (also called the free current), the second term is the contribution from the magnetization, and the last term is related to the electric polarization P.

Magnetostatics

In the absence of free electric currents and time-dependent effects, Maxwell's equations describing the magnetic quantities reduce to

These equations can be solved in analogy with electrostatic problems where

In this sense −∇⋅M plays the role of a fictitious "magnetic charge density" analogous to the electric charge density ρ; (see also demagnetizing field).

Dynamics

The time-dependent behavior of magnetization becomes important when considering nanoscale and nanosecond timescale magnetization. Rather than simply aligning with an applied field, the individual magnetic moments in a material begin to precess around the applied field and come into alignment through relaxation as energy is transferred into the lattice.

Reversal

Magnetization reversal, also known as switching, refers to the process that leads to a 180° (arc) re-orientation of the magnetization vector with respect to its initial direction, from one stable orientation to the opposite one. Technologically, this is one of the most important processes in magnetism that is linked to the magnetic data storage process such as used in modern hard disk drives. [5] As it is known today, there are only a few possible ways to reverse the magnetization of a metallic magnet:

  1. an applied magnetic field [5]
  2. spin injection via a beam of particles with spin [5]
  3. magnetization reversal by circularly polarized light; [6] i.e., incident electromagnetic radiation that is circularly polarized

Demagnetization

Demagnetization is the reduction or elimination of magnetization. [7] One way to do this is to heat the object above its Curie temperature, where thermal fluctuations have enough energy to overcome exchange interactions, the source of ferromagnetic order, and destroy that order. Another way is to pull it out of an electric coil with alternating current running through it, giving rise to fields that oppose the magnetization. [8]

One application of demagnetization is to eliminate unwanted magnetic fields. For example, magnetic fields can interfere with electronic devices such as cell phones or computers, and with machining by making cuttings cling to their parent. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Maxwell's equations</span> Equations describing classical electromagnetism

Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar, etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon. The modern form of the equations in their most common formulation is credited to Oliver Heaviside.

<span class="mw-page-title-main">Paramagnetism</span> Weak, attractive magnetism possessed by most elements and some compounds

Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, diamagnetic materials are repelled by magnetic fields and form induced magnetic fields in the direction opposite to that of the applied magnetic field. Paramagnetic materials include most chemical elements and some compounds; they have a relative magnetic permeability slightly greater than 1 and hence are attracted to magnetic fields. The magnetic moment induced by the applied field is linear in the field strength and rather weak. It typically requires a sensitive analytical balance to detect the effect and modern measurements on paramagnetic materials are often conducted with a SQUID magnetometer.

<span class="mw-page-title-main">Superparamagnetism</span> Form of magnetism

Superparamagnetism is a form of magnetism which appears in small ferromagnetic or ferrimagnetic nanoparticles. In sufficiently small nanoparticles, magnetization can randomly flip direction under the influence of temperature. The typical time between two flips is called the Néel relaxation time. In the absence of an external magnetic field, when the time used to measure the magnetization of the nanoparticles is much longer than the Néel relaxation time, their magnetization appears to be on average zero; they are said to be in the superparamagnetic state. In this state, an external magnetic field is able to magnetize the nanoparticles, similarly to a paramagnet. However, their magnetic susceptibility is much larger than that of paramagnets.

<span class="mw-page-title-main">Magnetic field</span> Distribution of magnetic force

A magnetic field is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, electric currents, and electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function assigning a vector to each point of space, called a vector field.

In electromagnetism, the magnetic susceptibility is a measure of how much a material will become magnetized in an applied magnetic field. It is the ratio of magnetization M to the applied magnetic field intensity H. This allows a simple classification, into two categories, of most materials' responses to an applied magnetic field: an alignment with the magnetic field, χ > 0, called paramagnetism, or an alignment against the field, χ < 0, called diamagnetism.

<span class="mw-page-title-main">Ampère's circuital law</span> Concept in classical electromagnetism

In classical electromagnetism, Ampère's circuital law relates the circulation of a magnetic field around a closed loop to the electric current passing through the loop.

<span class="mw-page-title-main">Magnetic moment</span> Magnetic strength and orientation of an object that produces a magnetic field

In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude of torque the object experiences in a given magnetic field. When the same magnetic field is applied, objects with larger magnetic moments experience larger torques. The strength of this torque depends not only on the magnitude of the magnetic moment but also on its orientation relative to the direction of the magnetic field. Its direction points from the south pole to north pole of the magnet.

<span class="mw-page-title-main">Displacement current</span> Physical quantity in electromagnetism

In electromagnetism, displacement current density is the quantity D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual current is. However it is not an electric current of moving charges, but a time-varying electric field. In physical materials, there is also a contribution from the slight motion of charges bound in atoms, called dielectric polarization.

<span class="mw-page-title-main">Polarization density</span> Vector field describing the density of electric dipole moments in a dielectric material

In classical electromagnetism, polarization density is the vector field that expresses the volumetric density of permanent or induced electric dipole moments in a dielectric material. When a dielectric is placed in an external electric field, its molecules gain electric dipole moment and the dielectric is said to be polarized.

<span class="mw-page-title-main">Permeability (electromagnetism)</span> Ability of magnetization

In electromagnetism, permeability is the measure of magnetization produced in a material in response to an applied magnetic field. Permeability is typically represented by the (italicized) Greek letter μ. It is the ratio of the magnetic induction to the magnetizing field as a function of the field in a material. The term was coined by William Thomson, 1st Baron Kelvin in 1872, and used alongside permittivity by Oliver Heaviside in 1885. The reciprocal of permeability is magnetic reluctivity.

In physics and engineering, a constitutive equation or constitutive relation is a relation between two or more physical quantities that is specific to a material or substance or field, and approximates its response to external stimuli, usually as applied fields or forces. They are combined with other equations governing physical laws to solve physical problems; for example in fluid mechanics the flow of a fluid in a pipe, in solid state physics the response of a crystal to an electric field, or in structural analysis, the connection between applied stresses or loads to strains or deformations.

In electrodynamics, Poynting's theorem is a statement of conservation of energy for electromagnetic fields developed by British physicist John Henry Poynting. It states that in a given volume, the stored energy changes at a rate given by the work done on the charges within the volume, minus the rate at which energy leaves the volume. It is only strictly true in media which is not dispersive, but can be extended for the dispersive case. The theorem is analogous to the work-energy theorem in classical mechanics, and mathematically similar to the continuity equation.

<span class="mw-page-title-main">Gaussian units</span> Variant of the centimetre–gram–second unit system

Gaussian units constitute a metric system of physical units. This system is the most common of the several electromagnetic unit systems based on cgs (centimetre–gram–second) units. It is also called the Gaussian unit system, Gaussian-cgs units, or often just cgs units. The term "cgs units" is ambiguous and therefore to be avoided if possible: there are several variants of cgs with conflicting definitions of electromagnetic quantities and units.

<span class="mw-page-title-main">Magnetostatics</span> Branch of physics about magnetism in systems with steady electric currents

Magnetostatics is the study of magnetic fields in systems where the currents are steady. It is the magnetic analogue of electrostatics, where the charges are stationary. The magnetization need not be static; the equations of magnetostatics can be used to predict fast magnetic switching events that occur on time scales of nanoseconds or less. Magnetostatics is even a good approximation when the currents are not static – as long as the currents do not alternate rapidly. Magnetostatics is widely used in applications of micromagnetics such as models of magnetic storage devices as in computer memory.

Micromagnetics is a field of physics dealing with the prediction of magnetic behaviors at sub-micrometer length scales. The length scales considered are large enough for the atomic structure of the material to be ignored, yet small enough to resolve magnetic structures such as domain walls or vortices.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

The potential magnetic energy of a magnet or magnetic moment in a magnetic field is defined as the mechanical work of the magnetic force on the re-alignment of the vector of the magnetic dipole moment and is equal to: The mechanical work takes the form of a torque : which will act to "realign" the magnetic dipole with the magnetic field.

For many paramagnetic materials, the magnetization of the material is directly proportional to an applied magnetic field, for sufficiently high temperatures and small fields. However, if the material is heated, this proportionality is reduced. For a fixed value of the field, the magnetic susceptibility is inversely proportional to temperature, that is

In optics, the Ewald–Oseen extinction theorem, sometimes referred to as just the extinction theorem, is a theorem that underlies the common understanding of scattering. It is named after Paul Peter Ewald and Carl Wilhelm Oseen, who proved the theorem in crystalline and isotropic media, respectively, in 1916 and 1915. Originally, the theorem applied to scattering by an isotropic dielectric objects in free space. The scope of the theorem was greatly extended to encompass a wide variety of bianisotropic media.

In condensed matter and atomic physics, Van Vleck paramagnetism refers to a positive and temperature-independent contribution to the magnetic susceptibility of a material, derived from second order corrections to the Zeeman interaction. The quantum mechanical theory was developed by John Hasbrouck Van Vleck between the 1920s and the 1930s to explain the magnetic response of gaseous nitric oxide and of rare-earth salts. Alongside other magnetic effects like Paul Langevin's formulas for paramagnetism and diamagnetism, Van Vleck discovered an additional paramagnetic contribution of the same order as Langevin's diamagnetism. Van Vleck contribution is usually important for systems with one electron short of being half filled and this contribution vanishes for elements with closed shells.

References

  1. 1 2 C.A. Gonano; R.E. Zich; M. Mussetta (2015). "Definition for Polarization P and Magnetization M Fully Consistent with Maxwell's Equations" (PDF). Progress in Electromagnetics Research B. 64: 83–101. doi: 10.2528/PIERB15100606 .
  2. "Units for Magnetic Properties" (PDF). Lake Shore Cryotronics, Inc. Archived from the original (PDF) on 2019-01-26. Retrieved 2015-06-10.
  3. Francis Briggs Silsbee (1962). Systems of Electrical Units. U.S. Department of Commerce, National Bureau of Standards.
  4. A. Herczynski (2013). "Bound charges and currents" (PDF). American Journal of Physics. 81 (3): 202–205. Bibcode:2013AmJPh..81..202H. doi:10.1119/1.4773441.
  5. 1 2 3 Stohr, J.; Siegmann, H. C. (2006), Magnetism: From fundamentals to Nanoscale Dynamics, Springer-Verlag, Bibcode:2006mffn.book.....S
  6. Stanciu, C. D.; et al. (2007), Physical Review Letters, vol. 99, p. 217204, doi:10.1103/PhysRevLett.99.217204, hdl: 2066/36522 , PMID   18233247, S2CID   6787518
  7. "Magnetic Component Engineering". Magnetic Component Engineering. Archived from the original on December 17, 2010. Retrieved April 18, 2011.
  8. 1 2 "Demagnetization". Introduction to Magnetic Particle Inspection. NDT Resource Center. Retrieved April 18, 2011.