Triboelectric effect

Last updated
Effect of triboelectricity: styrofoam peanuts clinging to a cat's fur due to static electricity. The triboelectric effect causes an electrostatic charge to build up on the fur due to the cat's motions. The electric field of the charges results in a slight attraction of the light plastic pieces to the charged fur. The triboelectric effect is also the cause of static cling in clothes. Cat demonstrating static cling with styrofoam peanuts.jpg
Effect of triboelectricity: styrofoam peanuts clinging to a cat's fur due to static electricity. The triboelectric effect causes an electrostatic charge to build up on the fur due to the cat's motions. The electric field of the charges results in a slight attraction of the light plastic pieces to the charged fur. The triboelectric effect is also the cause of static cling in clothes.

The triboelectric effect (also known as triboelectric charging) is a type of contact electrification on which certain materials become electrically charged after they are separated from a different material with which they were in contact. Rubbing the two materials with each other increases the contact between their surfaces, and hence the triboelectric effect. Rubbing glass with fur for example, or a plastic comb through the hair, can build up triboelectricity. Most everyday static electricity is triboelectric. The polarity and strength of the charges produced differ according to the materials, surface roughness, temperature, strain, and other properties.


The triboelectric effect is very unpredictable, and only broad generalizations can be made. Amber, for example, can acquire an electric charge by contact and separation (or friction) with a material like wool. This property was first recorded by Thales of Miletus. The word "electricity" is derived from William Gilbert's initial coinage, "electra", which originates in the Greek word for amber, ēlektron. The prefix tribo- (Greek for ‘rub’) refers to ‘friction’, as in tribology. Other examples of materials that can acquire a significant charge when rubbed together include glass rubbed with silk, and hard rubber rubbed with fur.

A very familiar example could be the rubbing of a plastic pen on a sleeve of almost any typical material like cotton, wool, polyester, or blended fabric used in modern clothing. Such an electrified pen would readily attract and pick up pieces of paper less than a square centimeter when the pen approaches. Also, such a pen will repel a similarly electrified pen. This repulsion is readily detectable in the sensitive setup of hanging both pens on threads and setting them nearby one another. Such experiments readily lead to the theory of two types of quantifiable electric charge, one being effectively the negative of the other, with a simple sum respecting signs giving the total charge. The electrostatic attraction of the charged plastic pen to neutral uncharged pieces of paper (for example) is due to temporary charge separation (electric polarisation or dipole moment) of electric charges within the paper (or perhaps alignments of permanent molecular or atomic electric dipoles). A net force then arises as the slightly nearer charges of the dipole get attracted more strongly in the nonuniform field from the pen which diminishes with distance. In a uniform electric field, for example inside parallel capacitor plates, temporary polarisation would occur in the small pieces of paper but with zero net attraction.

The triboelectric effect is now considered to be related to the phenomenon of adhesion, where two materials composed of different molecules tend to stick together because of attraction between the different molecules.[ citation needed ] While adhesion is not a chemical bond between atoms, there is an exchange of electrons between the different types of molecules, resulting in an electrostatic attraction between the molecules that holds them together. Physical separation of materials that are adhered together results in friction between the materials. Because the electron transfer between molecules in the different materials is not immediately reversible, the excess electrons in one type of molecule remain left behind, while a deficit of electrons occurs in the other. Thus, a material can develop a positive or negative charge (see also static electricity) that dissipates after the materials separate.[ citation needed ]

The mechanisms of triboelectrification (or contact-electrification) have been debated for many years, with possible mechanisms including electron transfer, ion transfer or the material's species transfer.[ clarification needed ] Recent studies in 2018 using Kelvin probe microscopy and triboelectric nanogenerators revealed that electron transfer is the dominant mechanism for triboelectrification between solid and solid. [1] [2] The work function model can be used to explain electron transfer between a metal and a dielectric. [3] [4] The surface states model can be used to explain electron transfer between two dielectrics. [1] [5] [6] For a general case, since triboelectrification occurs for any material, a generic model has been proposed by Wang, in which the electron transfer is caused by a strong electron cloud overlap between two atoms for the lowered interatomic potential barrier by shortening the bonding length. [7] Based on the model, the effects of temperature and photo excitation on the triboelectrification were investigated. [8] [9] Such model can be further extended to the cases of liquid-solid, liquid-liquid and even gas-liquid. [10]

A nanogenerator employing the triboelectric effect to generate electricity Lateral sliding mode of triboelectric nanogenerator.tif
A nanogenerator employing the triboelectric effect to generate electricity

Triboelectric series

Triboelectric series:
Most positively charged
Hair, oily skin
Nylon, dry skin
Acrylic, Lucite
Rabbit's fur
Cat's fur
Paper (Small positive charge)
Wool (No charge)
Steel (No charge)
Wood (Small negative charge)
Sealing wax
Rubber balloon
Hard rubber
Nickel, copper
Brass, silver
Gold, platinum
Acetate, rayon
Synthetic rubber
Styrene and polystyrene
Plastic wrap
Polyethylene (like Scotch tape)
Vinyl (PVC)
Teflon (PTFE)
Silicone rubber
Most negatively charged

A triboelectric series is a list of materials, ordered by certain relevant properties, such as how quickly a material develops a charge relative to other materials on the list. Johan Carl Wilcke published the first one in a 1757 paper on static charges. [11] [12] Materials are often listed in order of the polarity of charge separation when they are touched with another object. A material towards the bottom of the series, when touched to a material near the top of the series, will acquire a more negative charge. The farther away two materials are from each other on the series, the greater the charge transferred. Materials near to each other on the series may not exchange any charge, or may even exchange the opposite of what is implied by the list. This can be caused by rubbing, by contaminants or oxides, or other variables. The series was further expanded by Shaw [13] and Henniker [14] by including natural and synthetic polymers, and showed the alteration in the sequence depending on surface and environmental conditions. Lists vary somewhat as to the exact order of some materials, since the relative charge varies for nearby materials. From actual tests, there is little or no measurable difference in charge affinity between metals, probably because the rapid motion of conduction electrons cancels such differences. [15]

Another triboelectric series based on measuring the triboelectric charge density of materials was quantitatively standardized by Prof. Zhong Lin Wang's group. [16] The triboelectric charge density of the tested materials was measured with respect to liquid mercury in a glove box under well-defined conditions, with fixed temperature, pressure and humidity to achieve reliable values. The proposed method standardizes the experimental set up for uniformly quantifying the surface triboelectrification of general materials.

The quantified triboelectric series Triboelectric charge density.jpg
The quantified triboelectric series


Although the part 'tribo-' comes from the Greek for "rubbing", τρίβω (τριβή: friction), the two materials only need to come into contact for electrons to be exchanged. After coming into contact, a chemical bond is formed between parts of the two surfaces, called adhesion, and charges move from one material to the other to equalize their electrochemical potential. This is what creates the net charge imbalance between the objects. When separated, some of the bonded atoms have a tendency to keep extra electrons, and some a tendency to give them away, though the imbalance will be partially destroyed by tunneling or electrical breakdown (usually corona discharge). In addition, some materials may exchange ions of differing mobility, or exchange charged fragments of larger molecules.

The triboelectric effect is related to friction only because they both involve adhesion. However, the effect is greatly enhanced by rubbing the materials together, as they touch and separate many times. [17]

For surfaces with differing geometry, rubbing may also lead to heating of protrusions, causing pyroelectric charge separation which may add to the existing contact electrification, or which may oppose the existing polarity. Surface nano-effects are not well understood, and the atomic force microscope has enabled rapid progress in this field of physics.


Because the surface of the material is now electrically charged, either negatively or positively, any contact with an uncharged conductive object or with an object having substantially different charge may cause an electrical discharge of the built-up static electricity: a spark. A person simply walking across a carpet, removing a nylon[ citation needed ] shirt or rubbing against a car seat can also create a potential difference of many thousands of volts, which is enough to cause a spark one millimeter long or more.

Electrostatic discharge may not be evident in humid climates because surface condensation normally prevents triboelectric charging, while increased humidity increases the electrical conductivity of the air.

Electrostatic discharges (other than lightning which comes from triboelectric charging of ice and water droplets within clouds) cause minimal harm because the energy (1/2 V 2 C) of the spark is very small, being typically several tens of micro joules in cold dry weather, and much less than that in humid conditions; however, such sparks can ignite flammable vapors (see risks and counter-measures). This is not the case when the capacitance of one of the objects is very large.

Mechanism of triboelectrification

Interatomic interaction potential can be applied to understand the interactions between atoms. When two atoms are at equilibrium positions, with an equilibrium interatomic distance, the electron clouds or wave functions are overlapped partially. On one hand, if the two atoms get close to each other as pressed by an external force, the interatomic distance becomes shorter than the equilibrium distance, the two atoms thus repel each other because of the increase in electron cloud overlap. It is in this region that electron transfer occurs. On the other hand, if the two atoms are separated from each other such that they have a larger interatomic distance than the equilibrium distance, they will attract with each other due to long-range Van der Waals interaction.

Interatomic interaction potential between two atoms for understanding the electron transfer as shortening the bonding length by external force. Interatomic interaction potential.jpg
Interatomic interaction potential between two atoms for understanding the electron transfer as shortening the bonding length by external force.

An atomic-scale charge transfer mechanism (generic electron-cloud-potential model) was proposed for the triboelectrification. [2] [18] First, before the atomic-scale contact of two materials, there is no overlap between their electron clouds, and an attractive force exists. The electrons are so tightly bound in specific orbits so that they cannot escape freely. Then, when the two atoms in two materials get close to contact, an ionic or covalent bond is formed between them by the electron cloud overlap. An external force can further decrease the interatomic distance (bond length), and the strong electron cloud overlap induces the drop of the energy barrier between the two, resulting in electron transfer, which is the triboelectrification process. Once the two atoms are separated, the transferred electrons would remain because an energy is needed for the electrons to transfer back, forming the electrostatic charges on surfaces of the materials.

Generic electron-cloud-potential-well model proposed by Wang for explaining triboelectrification and charge transfer and release between two materials that may not have well-specified energy band structure. This model applies to general material cases. Electron cloud model.jpg
Generic electron-cloud-potential-well model proposed by Wang for explaining triboelectrification and charge transfer and release between two materials that may not have well-specified energy band structure. This model applies to general material cases.

In aircraft and spacecraft

Aircraft flying in weather will develop a static charge from air friction on the airframe. The static can be discharged with static dischargers or static wicks.

NASA follows what they call the "triboelectrification rule" whereby they will cancel a launch if the launch vehicle is predicted to pass through certain types of clouds. Flying through high-level clouds can generate "P-static" (P for precipitation), which can create static around the launch vehicle that will interfere with radio signals sent by or to the vehicle. This may prevent transmitting of telemetry to the ground or, if the need arises, sending a signal to the vehicle, particularly critical signals for the flight termination system. When a hold is put in place due to the triboelectrification rule, it remains until Space Wing and observer personnel, such as those in reconnaissance aircraft, indicate that the skies are clear. [19]

Risks and counter-measures


The effect is of considerable industrial importance in terms of both safety and potential damage to manufactured goods. Static discharge is a particular hazard in grain elevators owing to the danger of a dust explosion. The spark produced is fully able to ignite flammable vapours, for example, petrol, ether fumes as well as methane gas. For bulk fuel deliveries and aircraft fueling a grounding connection is made between the vehicle and the receiving tank prior to opening the tanks. When fueling vehicles at a retail station touching metal on the car before opening the gas tank or touching the nozzle may decrease one's risk of static ignition of fuel vapors.[ citation needed ]

In the workplace

Means have to be provided to discharge static from carts which may carry volatile liquids, flammable gasses, or oxygen in hospitals. Even where only a small charge is produced, it can result in dust particles being attracted to the rubbed surface. In the case of textile manufacture this can lead to a permanent grimy mark where the cloth comes in contact with dust accumulations held by a static charge. Dust attraction may be reduced by treating insulating surfaces with an antistatic cleaning agent.

Damage to electronics

Some electronic devices, most notably CMOS integrated circuits and MOSFETs (a type of transistor), can be accidentally destroyed by high-voltage static discharge. Such components are usually stored in a conductive foam for protection. Grounding oneself by touching the workbench, or using a special bracelet or anklet is standard practice while handling unconnected integrated circuits. Another way of dissipating charge is by using conducting materials such as carbon black loaded rubber mats in operating theatres, for example.

Devices containing sensitive components must be protected during normal use, installation, and disconnection, accomplished by designed-in protection at external connections where needed. Protection may be through the use of more robust devices or protective countermeasures at the device's external interfaces. These may be opto-isolators, less sensitive types of transistors, and static bypass devices such as metal oxide varistors.

Source of noise

Within medical cable assemblies and lead wires, random triboelectric noise is generated when the various conductors, insulation, and fillers rub against each other as the cable is flexed during movement. Noise generated within a cable is often called handling noise or cable noise, but this type of unwanted signal is more accurately described as triboelectric noise. When measuring low-level signals, noise in cable or wire may be problematic. For example, the noise in an ECG or another medical signal may make accurate diagnosis difficult or even impossible. Keeping triboelectric noise at acceptable levels requires careful material selection, design, and processing as cable material is manufactured. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Electricity</span> Phenomena related to electric charge

Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwell's equations. Various common phenomena are related to electricity, including lightning, static electricity, electric heating, electric discharges and many others.

<span class="mw-page-title-main">Electric charge</span> Physical property that quantifies an objects interaction with electric fields

Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be positive or negative. Like charges repel each other and unlike charges attract each other. An object with an absence of net charge is referred to as neutral. Early knowledge of how charged substances interact is now called classical electrodynamics, and is still accurate for problems that do not require consideration of quantum effects.

<span class="mw-page-title-main">Van de Graaff generator</span> Electrostatic particle accelerator operating on the triboelectric effect

A Van de Graaff generator is an electrostatic generator which uses a moving belt to accumulate electric charge on a hollow metal globe on the top of an insulated column, creating very high electric potentials. It produces very high voltage direct current (DC) electricity at low current levels. It was invented by American physicist Robert J. Van de Graaff in 1929. The potential difference achieved by modern Van de Graaff generators can be as much as 5 megavolts. A tabletop version can produce on the order of 100 kV and can store enough energy to produce visible electric sparks. Small Van de Graaff machines are produced for entertainment, and for physics education to teach electrostatics; larger ones are displayed in some science museums.

<span class="mw-page-title-main">Electrostatic discharge</span> Sudden flow of electric current between 2 electrically charged objects by contact

Electrostatic discharge (ESD) is a sudden and momentary flow of electric current between two electrically charged objects caused by contact, an electrical short or dielectric breakdown. A buildup of static electricity can be caused by tribocharging or by electrostatic induction. The ESD occurs when differently-charged objects are brought close together or when the dielectric between them breaks down, often creating a visible spark.

<span class="mw-page-title-main">Static electricity</span> Imbalance of electric charges within or on the surface of a material

Static electricity is an imbalance of electric charges within or on the surface of a material or between materials. The charge remains until it is able to move away by means of an electric current or electrical discharge. Static electricity is named in contrast with current electricity, where the electric charge flows through an electrical conductor or space, and transmits energy.

<span class="mw-page-title-main">Electrostatics</span> Study of stationary electric charge

Electrostatics is a branch of physics that studies electric charges at rest.

<span class="mw-page-title-main">Lichtenberg figure</span> Branching shapes

A Lichtenberg figure, or Lichtenberg dust figure, is a branching electric discharge that sometimes appears on the surface or in the interior of insulating materials. Lichtenberg figures are often associated with the progressive deterioration of high voltage components and equipment. The study of planar Lichtenberg figures along insulating surfaces and 3D electrical trees within insulating materials often provides engineers with valuable insights for improving the long-term reliability of high-voltage equipment. Lichtenberg figures are now known to occur on or within solids, liquids, and gases during electrical breakdown.

<span class="mw-page-title-main">Electrostatic induction</span> Spreading of electric charge due to presence of other charges

Electrostatic induction, also known as "electrostatic influence" or simply "influence" in Europe and Latin America, is a redistribution of electric charge in an object that is caused by the influence of nearby charges. In the presence of a charged body, an insulated conductor develops a positive charge on one end and a negative charge on the other end. Induction was discovered by British scientist John Canton in 1753 and Swedish professor Johan Carl Wilcke in 1762. Electrostatic generators, such as the Wimshurst machine, the Van de Graaff generator and the electrophorus, use this principle. See also Stephen Gray in this context. Due to induction, the electrostatic potential (voltage) is constant at any point throughout a conductor. Electrostatic induction is also responsible for the attraction of light nonconductive objects, such as balloons, paper or styrofoam scraps, to static electric charges. Electrostatic induction laws apply in dynamic situations as far as the quasistatic approximation is valid.

Contact electrification is a phrase that describes a phenomenon whereby surfaces become electrically charged, via a number of possible mechanisms, when two or more objects come within close proximity of one another. When two objects are "touched" together, sometimes the objects become spontaneously charged. One object may develop a net negative charge, while the other develops an equal and opposite positive charge. This effect may be caused by various physical processes – triboelectricity, the Volta effect, differing work functions of metals, and others which are collective referred to as contact electrification.

<span class="mw-page-title-main">Electrostatic generator</span> Device that generates electrical charge on a high voltage electrode

An electrostatic generator, or electrostatic machine, is an electrical generator that produces static electricity, or electricity at high voltage and low continuous current. The knowledge of static electricity dates back to the earliest civilizations, but for millennia it remained merely an interesting and mystifying phenomenon, without a theory to explain its behavior and often confused with magnetism. By the end of the 17th century, researchers had developed practical means of generating electricity by friction, but the development of electrostatic machines did not begin in earnest until the 18th century, when they became fundamental instruments in the studies about the new science of electricity.

<span class="mw-page-title-main">Electric spark</span> Abrupt electrical discharge through an ionised channel

An electric spark is an abrupt electrical discharge that occurs when a sufficiently high electric field creates an ionized, electrically conductive channel through a normally-insulating medium, often air or other gases or gas mixtures. Michael Faraday described this phenomenon as "the beautiful flash of light attending the discharge of common electricity".

<span class="mw-page-title-main">Double layer (surface science)</span> Condensed matter physics

A double layer is a structure that appears on the surface of an object when it is exposed to a fluid. The object might be a solid particle, a gas bubble, a liquid droplet, or a porous body. The DL refers to two parallel layers of charge surrounding the object. The first layer, the surface charge, consists of ions adsorbed onto the object due to chemical interactions. The second layer is composed of ions attracted to the surface charge via the Coulomb force, electrically screening the first layer. This second layer is loosely associated with the object. It is made of free ions that move in the fluid under the influence of electric attraction and thermal motion rather than being firmly anchored. It is thus called the "diffuse layer".

<span class="mw-page-title-main">Glass rod</span>

A glass stirring rod, glass rod, stirring rod or stir rod is a piece of laboratory equipment used to mix chemicals. They are usually made of solid glass, about the thickness and slightly longer than a drinking straw, with rounded ends.

A Nanogenerator is a type of technology that converts mechanical/thermal energy as produced by small-scale physical change into electricity. A Nanogenerator has three typical approaches: piezoelectric, triboelectric, and pyroelectric nanogenerators. Both the piezoelectric and triboelectric nanogenerators can convert mechanical energy into electricity. However, pyroelectric nanogenerators can be used to harvest thermal energy from a time-dependent temperature fluctuation.

<span class="mw-page-title-main">Electrostatic discharge materials</span>

Electrostatic discharge materials are plastics that reduce static electricity to protect against damage to electrostatic-sensitive devices (ESD) or to prevent the accidental ignition of flammable liquids or gases.

Tribotronics is about the research on interaction between triboelectricity and semiconductor, which is using triboelectric potential controlling electrical transport and transformation in semiconductors for information sensing and active control (info-tribotronics), and using semiconductors managing triboelectric power transfer and conversion in circuits for power management and efficient utilization (power-tribotronics).

The tribovoltaic effect is the effect of generating of tribo-current at a sliding semiconductors interface or sliding semiconductor and metal interface, which is firstly proposed by Wang et al. in 2018. When a P-type semiconductor slides over a N-type semiconductor, the energy “quantum” also named as “bindington” will be released at the interface due to the formation of new chemical bonds. The released energy can excite electron-hole pairs at the interface, which are further separated and moved from one side to the other side under the built-in electric field at the semiconductor interface, generating a direct current in external circuit.

The Hybrid electric double layer is a model to describe the formation of electric double layer considering the contribution of electron transfer at liquid-solid interface, which is firstly proposed by Wang et al. in 2018.The major difference between the hybrid EDL model and the traditional EDL model is that the hybrid EDL model considers that there are both electrons and ions on the solid surface in the EDL, while the traditional EDL model considers that the solid surface has only adsorbed ions.

<span class="mw-page-title-main">Zhong Lin Wang</span> Physicist

Zhong Lin Wang is a Chinese-American physicist, materials scientist and engineer specialized in nanotechnology, energy science and electronics. He received his PhD from Arizona State University in 1987. He is the Hightower Chair in Materials Science and Engineering and Regents' Professor at the Georgia Institute of Technology, USA.


  1. 1 2 Xu C, Zi Y, Wang AC, Zou H, Dai Y, He X, et al. (April 2018). "On the Electron-Transfer Mechanism in the Contact-Electrification Effect". Advanced Materials. 30 (15): e1706790. doi:10.1002/adma.201706790. PMID   29508454. S2CID   3757981.
  2. 1 2 Xu C, Wang AC, Zou H, Zhang B, Zhang C, Zi Y, et al. (September 2018). "Raising the Working Temperature of a Triboelectric Nanogenerator by Quenching Down Electron Thermionic Emission in Contact-Electrification". Advanced Materials. 30 (38): e1803968. doi:10.1002/adma.201803968. PMID   30091484. S2CID   51940860.
  3. Zhou YS, Liu Y, Zhu G, Lin ZH, Pan C, Jing Q, Wang ZL (June 2013). "In situ quantitative study of nanoscale triboelectrification and patterning". Nano Letters. 13 (6): 2771–6. Bibcode:2013NanoL..13.2771Z. doi:10.1021/nl401006x. PMID   23627668.
  4. Zhou YS, Wang S, Yang Y, Zhu G, Niu S, Lin ZH, et al. (March 2014). "Manipulating nanoscale contact electrification by an applied electric field". Nano Letters. 14 (3): 1567–72. Bibcode:2014NanoL..14.1567Z. doi:10.1021/nl404819w. PMID   24479730.
  5. Castle GS, Schein LB (December 1995). "General model of sphere-sphere insulator contact electrification". Journal of Electrostatics. 36 (2): 165–173. doi:10.1016/0304-3886(95)00043-7.
  6. Xu C, Zhang B, Wang AC, Zou H, Liu G, Ding W, et al. (February 2019). "Contact-Electrification between Two Identical Materials: Curvature Effect". ACS Nano. 13 (2): 2034–2041. doi:10.1021/acsnano.8b08533. PMID   30707552. S2CID   73414247.
  7. Wang ZL, Wang AC (June 2019). "On the origin of contact-electrification". Materials Today. 30: 34–51. doi:10.1016/j.mattod.2019.05.016. S2CID   189987682.
  8. Lin S, Xu L, Xu C, Chen X, Wang AC, Zhang B, et al. (April 2019). "Electron Transfer in Nanoscale Contact Electrification: Effect of Temperature in the Metal-Dielectric Case". Advanced Materials. 31 (17): e1808197. doi:10.1002/adma.201808197. PMID   30844100. S2CID   73516230.
  9. Lin S, Xu L, Zhu L, Chen X, Wang ZL (July 2019). "Electron Transfer in Nanoscale Contact Electrification: Photon Excitation Effect". Advanced Materials. 31 (27): e1901418. doi:10.1002/adma.201901418. PMID   31095783. S2CID   157058869.
  10. Nie J, Wang Z, Ren Z, Li S, Chen X, Lin Wang Z (May 2019). "Power generation from the interaction of a liquid droplet and a liquid membrane". Nature Communications. 10 (1): 2264. Bibcode:2019NatCo..10.2264N. doi:10.1038/s41467-019-10232-x. PMC   6531479 . PMID   31118419.
  11. A Natural History: Devin Corbin | The Owls
  12. Gillispie CC (1976). Dictionary of Scientific Biography. New York: Scribner. pp. 352–353.
  13. Fowle FE (1921). Smithsonian Physical Tables. Washington: Smithsonian Institution. p. 322.
  14. Henniker J (November 1962). "Triboelectricity in Polymers". Nature. 196 (4853): 474. Bibcode:1962Natur.196..474H. doi:10.1038/196474a0. S2CID   4211729.
  15. "The TriboElectric Series". Archived from the original on 5 April 2014. Retrieved 27 November 2012.
  16. 1 2 Zou H, Zhang Y, Guo L, Wang P, He X, Dai G, et al. (March 2019). "Quantifying the triboelectric series". Nature Communications. 10 (1): 1427. Bibcode:2019NatCo..10.1427Z. doi:10.1038/s41467-019-09461-x. PMC   6441076 . PMID   30926850.
  17. Diaz AF, Felix-Navarro RM (2004). "A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties" (PDF). Journal of Electrostatics. 62 (4): 277–290. doi:10.1016/j.elstat.2004.05.005. ISSN   0304-3886 . Retrieved 12 October 2018.
  18. Lowell J (1 December 1977). "The role of material transfer in contact electrification". Journal of Physics D: Applied Physics. 10 (17): L233–L235. Bibcode:1977JPhD...10L.233L. doi:10.1088/0022-3727/10/17/001. ISSN   0022-3727. S2CID   250774562.
  19. Kanigan, Dan (27 October 2009). "Flight Rules and Triboelectrification (What the Heck is That?) | Ares I-X Test Flight". NASA . Retrieved 31 January 2017.
  20. "Triboelectric Noise in Medical Cables and Wires". 29 August 2014.

Further reading