Classical electromagnetism

Last updated

Classical electromagnetism or classical electrodynamics is a branch of theoretical physics that studies the interactions between electric charges and currents using an extension of the classical Newtonian model. The theory provides a description of electromagnetic phenomena whenever the relevant length scales and field strengths are large enough that quantum mechanical effects are negligible. For small distances and low field strengths, such interactions are better described by quantum electrodynamics.

Contents

Fundamental physical aspects of classical electrodynamics are presented in many texts, such as those by Feynman, Leighton and Sands, [1] Griffiths, [2] Panofsky and Phillips, [3] and Jackson. [4]

History

The physical phenomena that electromagnetism describes have been studied as separate fields since antiquity. For example, there were many advances in the field of optics centuries before light was understood to be an electromagnetic wave. However, the theory of electromagnetism, as it is currently understood, grew out of Michael Faraday's experiments suggesting the existence of an electromagnetic field and James Clerk Maxwell's use of differential equations to describe it in his A Treatise on Electricity and Magnetism (1873). The development of electromagnetism in Europe included the development of methods to measure voltage, current, capacitance, and resistance. For a detailed historical account, consult Pauli, [5] Whittaker, [6] Pais, [7] and Hunt. [8]

Lorentz force

The electromagnetic field exerts the following force (often called the Lorentz force) on charged particles:

where all boldfaced quantities are vectors: F is the force that a particle with charge q experiences, E is the electric field at the location of the particle, v is the velocity of the particle, B is the magnetic field at the location of the particle.

The above equation illustrates that the Lorentz force is the sum of two vectors. One is the cross product of the velocity and magnetic field vectors. Based on the properties of the cross product, this produces a vector that is perpendicular to both the velocity and magnetic field vectors. The other vector is in the same direction as the electric field. The sum of these two vectors is the Lorentz force.

Although the equation appears to suggest that the electric and magnetic fields are independent, the equation can be rewritten in term of four-current (instead of charge) and a single electromagnetic tensor that represents the combined field ():

Electric field

The electric field E is defined such that, on a stationary charge:

where q0 is what is known as a test charge and F is the force on that charge. The size of the charge doesn't really matter, as long as it is small enough not to influence the electric field by its mere presence. What is plain from this definition, though, is that the unit of E is N/C (newtons per coulomb). This unit is equal to V/m (volts per meter); see below.

In electrostatics, where charges are not moving, around a distribution of point charges, the forces determined from Coulomb's law may be summed. The result after dividing by q0 is:

where n is the number of charges, qi is the amount of charge associated with the ith charge, ri is the position of the ith charge, r is the position where the electric field is being determined, and ε0 is the electric constant.

If the field is instead produced by a continuous distribution of charge, the summation becomes an integral:

where is the charge density and is the vector that points from the volume element to the point in space where E is being determined.

Both of the above equations are cumbersome, especially if one wants to determine E as a function of position. A scalar function called the electric potential can help. Electric potential, also called voltage (the units for which are the volt), is defined by the line integral

where φ(r) is the electric potential, and C is the path over which the integral is being taken.

Unfortunately, this definition has a caveat. From Maxwell's equations, it is clear that ∇ × E is not always zero, and hence the scalar potential alone is insufficient to define the electric field exactly. As a result, one must add a correction factor, which is generally done by subtracting the time derivative of the A vector potential described below. Whenever the charges are quasistatic, however, this condition will be essentially met.

From the definition of charge, one can easily show that the electric potential of a point charge as a function of position is:

where q is the point charge's charge, r is the position at which the potential is being determined, and ri is the position of each point charge. The potential for a continuous distribution of charge is:

where is the charge density, and is the distance from the volume element to point in space where φ is being determined.

The scalar φ will add to other potentials as a scalar. This makes it relatively easy to break complex problems down into simple parts and add their potentials. Taking the definition of φ backwards, we see that the electric field is just the negative gradient (the del operator) of the potential. Or:

From this formula it is clear that E can be expressed in V/m (volts per meter).

Electromagnetic waves

A changing electromagnetic field propagates away from its origin in the form of a wave. These waves travel in vacuum at the speed of light and exist in a wide spectrum of wavelengths. Examples of the dynamic fields of electromagnetic radiation (in order of increasing frequency): radio waves, microwaves, light (infrared, visible light and ultraviolet), x-rays and gamma rays. In the field of particle physics this electromagnetic radiation is the manifestation of the electromagnetic interaction between charged particles.

General field equations

As simple and satisfying as Coulomb's equation may be, it is not entirely correct in the context of classical electromagnetism. Problems arise because changes in charge distributions require a non-zero amount of time to be "felt" elsewhere (required by special relativity).

For the fields of general charge distributions, the retarded potentials can be computed and differentiated accordingly to yield Jefimenko's equations.

Retarded potentials can also be derived for point charges, and the equations are known as the Liénard–Wiechert potentials. The scalar potential is:

where q is the point charge's charge and r is the position. rq and vq are the position and velocity of the charge, respectively, as a function of retarded time. The vector potential is similar:

These can then be differentiated accordingly to obtain the complete field equations for a moving point particle.

Models

Branches of classical electromagnetism such as optics, electrical and electronic engineering consist of a collection of relevant mathematical models of different degrees of simplification and idealization to enhance the understanding of specific electrodynamics phenomena, cf. [9] An electrodynamics phenomenon is determined by the particular fields, specific densities of electric charges and currents, and the particular transmission medium. Since there are infinitely many of them, in modeling there is a need for some typical, representative

(a) electrical charges and currents, e.g. moving pointlike charges and electric and magnetic dipoles, electric currents in a conductor etc.;
(b) electromagnetic fields, e.g. voltages, the Liénard–Wiechert potentials, the monochromatic plane waves, optical rays; radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays, gamma rays etc.;
(c) transmission media, e.g. electronic components, antennas, electromagnetic waveguides, flat mirrors, mirrors with curved surfaces convex lenses, concave lenses; resistors, inductors, capacitors, switches; wires, electric and optical cables, transmission lines, integrated circuits etc.; all of which have only few variable characteristics.

See also

Related Research Articles

Lorentz force Force acting on charged particles in electric and magnetic fields

In physics the Lorentz force is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge q moving with a velocity v in an electric field E and a magnetic field B experiences a force of

Electric field Physical field surrounding an electric charge

An electric field is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field for a system of charged particles. Electric fields originate from electric charges, or from time-varying magnetic fields. Electric fields and magnetic fields are both manifestations of the electromagnetic force, one of the four fundamental forces of nature.

Electric potential Line integral of the electric field

The electric potential is defined as the amount of work energy needed to move a unit of electric charge from a reference point to the specific point in an electric field. More precisely, it is the energy per unit charge for a test charge that is so small that the disturbance of the field under consideration is negligible. Furthermore, the motion across the field is supposed to proceed with negligible acceleration, so as to avoid the test charge acquiring kinetic energy or producing radiation. By definition, the electric potential at the reference point is zero units. Typically, the reference point is earth or a point at infinity, although any point can be used.

Gausss law Foundational law of electromagnetism relating electric field and charge distributions

In physics and electromagnetism, Gauss's law, also known as Gauss's flux theorem, is a law relating the distribution of electric charge to the resulting electric field. In its integral form, it states that the flux of the electric field out of an arbitrary closed surface is proportional to the electric charge enclosed by the surface, irrespective of how that charge is distributed. Even though the law alone is insufficient to determine the electric field across a surface enclosing any charge distribution, this may be possible in cases where symmetry mandates uniformity of the field. Where no such symmetry exists, Gauss's law can be used in its differential form, which states that the divergence of the electric field is proportional to the local density of charge.

Poissons equation Expression frequently encountered in mathematical physics, generalization of Laplaces equation.

Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate electrostatic or gravitational (force) field. It is a generalization of Laplace's equation, which is also frequently seen in physics. The equation is named after French mathematician and physicist Siméon Denis Poisson.

Displacement current Physical quantity in electromagnetism

In electromagnetism, displacement current density is the quantity D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual current is. However it is not an electric current of moving charges, but a time-varying electric field. In physical materials, there is also a contribution from the slight motion of charges bound in atoms, called dielectric polarization.

In plasmas and electrolytes, the Debye length, is a measure of a charge carrier's net electrostatic effect in a solution and how far its electrostatic effect persists. With each Debye length the charges are increasingly electrically screened and the electric potential decreases in magnitude by 1/e. A Debye sphere is a volume whose radius is the Debye length. Debye length is an important parameter in plasma physics, electrolytes, and colloids. The corresponding Debye screening wave vector for particles of density , charge at a temperature is given by in Gaussian units. Expressions in MKS units will be given below. The analogous quantities at very low temperatures are known as the Thomas–Fermi length and the Thomas–Fermi wave vector. They are of interest in describing the behaviour of electrons in metals at room temperature.

Magnetic vector potential Integral of the magnetic field

In classical electromagnetism, magnetic vector potential is the vector quantity defined so that its curl is equal to the magnetic field: . Together with the electric potential φ, the magnetic vector potential can be used to specify the electric field E as well. Therefore, many equations of electromagnetism can be written either in terms of the fields E and B, or equivalently in terms of the potentials φ and A. In more advanced theories such as quantum mechanics, most equations use potentials rather than fields.

A classical field theory is a physical theory that predicts how one or more physical fields interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called quantum field theories. In most contexts, 'classical field theory' is specifically meant to describe electromagnetism and gravitation, two of the fundamental forces of nature.

In electromagnetism, the Lorenz gauge condition or Lorenz gauge, for Ludvig Lorenz, is a partial gauge fixing of the electromagnetic vector potential by requiring The name is frequently confused with Hendrik Lorentz, who has given his name to many concepts in this field. The condition is Lorentz invariant. The condition does not completely determine the gauge: one can still make a gauge transformation where is the four-gradient and is a harmonic scalar function. The Lorenz condition is used to eliminate the redundant spin-0 component in the (1/2, 1/2) representation theory of the Lorentz group. It is equally used for massive spin-1 fields where the concept of gauge transformations does not apply at all.

Electric potential energy Potential energy that results from conservative Coulomb forces

Electric potential energy is a potential energy that results from conservative Coulomb forces and is associated with the configuration of a particular set of point charges within a defined system. An object may have electric potential energy by virtue of two key elements: its own electric charge and its relative position to other electrically charged objects.

Gauge fixing Procedure of coping with redundant degrees of freedom in physical field theories

In the physics of gauge theories, gauge fixing denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct configuration of the system as an equivalence class of detailed local field configurations. Any two detailed configurations in the same equivalence class are related by a gauge transformation, equivalent to a shear along unphysical axes in configuration space. Most of the quantitative physical predictions of a gauge theory can only be obtained under a coherent prescription for suppressing or ignoring these unphysical degrees of freedom.

Larmor formula Gives the total power radiated by an accelerating, nonrelativistic point charge

In electrodynamics, the Larmor formula is used to calculate the total power radiated by a nonrelativistic point charge as it accelerates. It was first derived by J. J. Larmor in 1897, in the context of the wave theory of light.

Jefimenkos equations Equations of electromagnetism

In electromagnetism, Jefimenko's equations give the electric field and magnetic field due to a distribution of electric charges and electric current in space, that takes into account the propagation delay of the fields due to the finite speed of light and relativistic effects. Therefore they can be used for moving charges and currents. They are the particular solutions to Maxwell's equations for any arbitrary distribution of charges and currents.

Inhomogeneous electromagnetic wave equation Equation in physics

In electromagnetism and applications, an inhomogeneous electromagnetic wave equation, or nonhomogeneous electromagnetic wave equation, is one of a set of wave equations describing the propagation of electromagnetic waves generated by nonzero source charges and currents. The source terms in the wave equations make the partial differential equations inhomogeneous, if the source terms are zero the equations reduce to the homogeneous electromagnetic wave equations. The equations follow from Maxwell's equations.

Mathematical descriptions of the electromagnetic field Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

Liénard–Wiechert potential Electromagnetic effect of point charges

The Liénard–Wiechert potentials describe the classical electromagnetic effect of a moving electric point charge in terms of a vector potential and a scalar potential in the Lorenz gauge. Stemming directly from Maxwell's equations, these describe the complete, relativistically correct, time-varying electromagnetic field for a point charge in arbitrary motion, but are not corrected for quantum mechanical effects. Electromagnetic radiation in the form of waves can be obtained from these potentials. These expressions were developed in part by Alfred-Marie Liénard in 1898 and independently by Emil Wiechert in 1900.

Retarded potential Type of potential in electrodynamics

In electrodynamics, the retarded potentials are the electromagnetic potentials for the electromagnetic field generated by time-varying electric current or charge distributions in the past. The fields propagate at the speed of light c, so the delay of the fields connecting cause and effect at earlier and later times is an important factor: the signal takes a finite time to propagate from a point in the charge or current distribution to another point in space, see figure below.

Electric dipole moment Measure of separation of positive and negative charges

The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system, that is, a measure of the system's overall polarity. The SI unit for electric dipole moment is the coulomb-meter (C⋅m). The debye (D) is another unit of measurement used in atomic physics and chemistry.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

References

  1. Feynman, R. P., R .B. Leighton, and M. Sands, 1965, The Feynman Lectures on Physics, Vol. II: the Electromagnetic Field, Addison-Wesley, Reading, Massachusetts
  2. Griffiths, David J. (2013). Introduction to Electrodynamics (4th ed.). Boston, Mas.: Pearson. ISBN   978-0321856562.
  3. Panofsky, W. K., and M. Phillips, 1969, Classical Electricity and Magnetism, 2nd edition, Addison-Wesley, Reading, Massachusetts
  4. Jackson, John D. (1998). Classical Electrodynamics (3rd ed.). New York: Wiley. ISBN   978-0-471-30932-1.
  5. Pauli, W., 1958, Theory of Relativity, Pergamon, London
  6. Whittaker, E. T., 1960, History of the Theories of the Aether and Electricity, Harper Torchbooks, New York.
  7. Pais, A., 1983, Subtle is the Lord: The Science and the Life of Albert Einstein , Oxford University Press, Oxford
  8. Bruce J. Hunt (1991) The Maxwellians
  9. Peierls, Rudolf. Model-making in physics, Contemporary Physics, Volume 21 (1), January 1980, 3-17.