Articles about |

Electromagnetism |
---|

**Classical electromagnetism** or **classical electrodynamics** is a branch of theoretical physics that studies the interactions between electric charges and currents using an extension of the classical Newtonian model. The theory provides a description of electromagnetic phenomena whenever the relevant length scales and field strengths are large enough that quantum mechanical effects are negligible. For small distances and low field strengths, such interactions are better described by quantum electrodynamics.

- History
- Lorentz force
- Electric field
- Electromagnetic waves
- General field equations
- Models
- See also
- References

Fundamental physical aspects of classical electrodynamics are presented in many texts, such as those by Feynman, Leighton and Sands,^{ [1] } Griffiths,^{ [2] } Panofsky and Phillips,^{ [3] } and Jackson.^{ [4] }

The physical phenomena that electromagnetism describes have been studied as separate fields since antiquity. For example, there were many advances in the field of optics centuries before light was understood to be an electromagnetic wave. However, the theory of electromagnetism, as it is currently understood, grew out of Michael Faraday's experiments suggesting the existence of an electromagnetic field and James Clerk Maxwell's use of differential equations to describe it in his * A Treatise on Electricity and Magnetism * (1873). For a detailed historical account, consult Pauli,^{ [5] } Whittaker,^{ [6] } Pais,^{ [7] } and Hunt.^{ [8] }

The electromagnetic field exerts the following force (often called the Lorentz force) on charged particles:

where all boldfaced quantities are vectors: **F** is the force that a particle with charge *q* experiences, **E** is the electric field at the location of the particle, **v** is the velocity of the particle, **B** is the magnetic field at the location of the particle.

The above equation illustrates that the Lorentz force is the sum of two vectors. One is the cross product of the velocity and magnetic field vectors. Based on the properties of the cross product, this produces a vector that is perpendicular to both the velocity and magnetic field vectors. The other vector is in the same direction as the electric field. The sum of these two vectors is the Lorentz force.

Although the equation appears to suggest that the electric and magnetic fields are independent, the equation can be rewritten in term of four-current (instead of charge) and a single electromagnetic tensor that represents the combined field ():

The electric field **E** is defined such that, on a stationary charge:

where *q*_{0} is what is known as a test charge and **F** is the force on that charge. The size of the charge doesn't really matter, as long as it is small enough not to influence the electric field by its mere presence. What is plain from this definition, though, is that the unit of **E** is N/C (newtons per coulomb). This unit is equal to V/m (volts per meter); see below.

In electrostatics, where charges are not moving, around a distribution of point charges, the forces determined from Coulomb's law may be summed. The result after dividing by *q*_{0} is:

where *n* is the number of charges, *q _{i}* is the amount of charge associated with the

If the field is instead produced by a continuous distribution of charge, the summation becomes an integral:

where is the charge density and is the vector that points from the volume element to the point in space where **E** is being determined.

Both of the above equations are cumbersome, especially if one wants to determine **E** as a function of position. A scalar function called the electric potential can help. Electric potential, also called voltage (the units for which are the volt), is defined by the line integral

where *φ(r)* is the electric potential, and *C* is the path over which the integral is being taken.

Unfortunately, this definition has a caveat. From Maxwell's equations, it is clear that ∇ × **E** is not always zero, and hence the scalar potential alone is insufficient to define the electric field exactly. As a result, one must add a correction factor, which is generally done by subtracting the time derivative of the **A** vector potential described below. Whenever the charges are quasistatic, however, this condition will be essentially met.

From the definition of charge, one can easily show that the electric potential of a point charge as a function of position is:

where *q* is the point charge's charge, **r** is the position at which the potential is being determined, and **r**_{i} is the position of each point charge. The potential for a continuous distribution of charge is:

where is the charge density, and is the distance from the volume element to point in space where *φ* is being determined.

The scalar *φ* will add to other potentials as a scalar. This makes it relatively easy to break complex problems down in to simple parts and add their potentials. Taking the definition of *φ* backwards, we see that the electric field is just the negative gradient (the del operator) of the potential. Or:

From this formula it is clear that **E** can be e^{ [9] } xpressed in V/m (volts per meter).

A changing electromagnetic field propagates away from its origin in the form of a wave. These waves travel in vacuum at the speed of light and exist in a wide spectrum of wavelengths. Examples of the dynamic fields of electromagnetic radiation (in order of increasing frequency): radio waves, microwaves, light (infrared, visible light and ultraviolet), x-rays and gamma rays. In the field of particle physics this electromagnetic radiation is the manifestation of the electromagnetic interaction between charged particles.

As simple and satisfying as Coulomb's equation may be, it is not entirely correct in the context of classical electromagnetism. Problems arise because changes in charge distributions require a non-zero amount of time to be "felt" elsewhere (required by special relativity).

For the fields of general charge distributions, the retarded potentials can be computed and differentiated accordingly to yield Jefimenko's equations.

Retarded potentials can also be derived for point charges, and the equations are known as the Liénard–Wiechert potentials. The scalar potential is:

where *q* is the point charge's charge and **r** is the position. **r**_{q} and **v**_{q} are the position and velocity of the charge, respectively, as a function of retarded time. The vector potential is similar:

These can then be differentiated accordingly to obtain the complete field equations for a moving point particle.

Branches of classical electromagnetism such as optics, electrical and electronic engineering consist of a collection of relevant mathematical models of different degrees of simplification and idealization to enhance the understanding of specific electrodynamics phenomena, cf.^{ [10] } An electrodynamics phenomenon is determined by the particular fields, specific densities of electric charges and currents, and the particular transmission medium. Since there are infinitely many of them, in modeling there is a need for some typical, representative

- (a) electrical charges and currents, e.g. moving pointlike charges and electric and magnetic dipoles, electric currents in a conductor etc.;
- (b) electromagnetic fields, e.g. voltages, the Liénard–Wiechert potentials, the monochromatic plane waves, optical rays; radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays, gamma rays etc.;
- (c) transmission media, e.g. electronic components, antennas, electromagnetic waveguides, flat mirrors, mirrors with curved surfaces convex lenses, concave lenses; resistors, inductors, capacitors, switches; wires, electric and optical cables, transmission lines, integrated circuits etc.;

all of which have only few variable characteristics. It worth mentioning that the exact representation of the electromagnetic field is used in the analysis and design of antennas. 658017

- Electromagnetism
- Maxwell's equations
- Weber electrodynamics
- Wheeler–Feynman absorber theory
- Leontovich boundary condition

In physics the **Lorentz force** is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge q moving with a velocity **v** in an electric field **E** and a magnetic field **B** experiences a force of

**Maxwell's equations** are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon.

An **electric field** is the physical field that surrounds electrically-charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field for a system of charged particles. Electric fields originate from electric charges, or from time-varying magnetic fields. Electric fields and magnetic fields are both manifestations of the electromagnetic force, one of the four fundamental forces of nature.

The **electric potential** is the amount of work energy needed to move a unit of electric charge from a reference point to the specific point in an electric field with negligible acceleration of the test charge to avoid producing kinetic energy or radiation by test charge. Typically, the reference point is the Earth or a point at infinity, although any point can be used. More precisely it is the energy per unit charge for a small test charge that does not disturb significantly the field and the charge distribution producing the field under consideration.

In physics and electromagnetism, **Gauss's law**, also known as **Gauss's flux theorem**, is a law relating the distribution of electric charge to the resulting electric field. In its integral form, it states that the flux of the electric field out of an arbitrary closed surface is proportional to the electric charge enclosed by the surface, irrespective of how that charge is distributed. Even though the law alone is insufficient to determine the electric field across a surface enclosing any charge distribution, this may be possible in cases where symmetry mandates uniformity of the field. Where no such symmetry exists, Gauss's law can be used in its differential form, which states that the divergence of the electric field is proportional to the local density of charge.

In physics, **screening** is the damping of electric fields caused by the presence of mobile charge carriers. It is an important part of the behavior of charge-carrying fluids, such as ionized gases, electrolytes, and charge carriers in electronic conductors . In a fluid, with a given permittivity *ε*, composed of electrically charged constituent particles, each pair of particles interact through the Coulomb force as

**Poisson's equation** is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate electrostatic or gravitational (force) field. It is a generalization of Laplace's equation, which is also frequently seen in physics. The equation is named after French mathematician and physicist Siméon Denis Poisson.

In electromagnetism, **displacement current density** is the quantity ∂* D*/∂

In plasmas and electrolytes, the **Debye length**, is a measure of a charge carrier's net electrostatic effect in a solution and how far its electrostatic effect persists. A **Debye sphere** is a volume whose radius is the Debye length. With each Debye length, charges are increasingly electrically screened. Every Debye‐length , the electric potential will decrease in magnitude by 1/e. Debye length is an important parameter in plasma physics, electrolytes, and colloids. The corresponding Debye screening wave vector for particles of density , charge at a temperature is given by in Gaussian units. Expressions in MKS units will be given below. The analogous quantities at very low temperatures are known as the Thomas–Fermi length and the Thomas–Fermi wave vector. They are of interest in describing the behaviour of electrons in metals at room temperature.

**Magnetic vector potential**, **A**, is the vector quantity in classical electromagnetism defined so that its curl is equal to the magnetic field: . Together with the electric potential *φ*, the magnetic vector potential can be used to specify the electric field **E** as well. Therefore, many equations of electromagnetism can be written either in terms of the fields **E** and **B**, or equivalently in terms of the potentials *φ* and **A**. In more advanced theories such as quantum mechanics, most equations use potentials rather than fields.

A **classical field theory** is a physical theory that predicts how one or more physical fields interact with matter through **field equations**. The term 'classical field theory' is commonly reserved for describing those physical theories that describe electromagnetism and gravitation, two of the fundamental forces of nature. Theories that incorporate quantum mechanics are called quantum field theories.

In the physics of gauge theories, **gauge fixing** denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct configuration of the system as an equivalence class of detailed local field configurations. Any two detailed configurations in the same equivalence class are related by a gauge transformation, equivalent to a shear along unphysical axes in configuration space. Most of the quantitative physical predictions of a gauge theory can only be obtained under a coherent prescription for suppressing or ignoring these unphysical degrees of freedom.

In electrodynamics, the **Larmor formula** is used to calculate the total power radiated by a nonrelativistic point charge as it accelerates. It was first derived by J. J. Larmor in 1897, in the context of the wave theory of light.

In electromagnetism and applications, an **inhomogeneous electromagnetic wave equation**, or **nonhomogeneous electromagnetic wave equation**, is one of a set of wave equations describing the propagation of electromagnetic waves generated by nonzero source charges and currents. The source terms in the wave equations make the partial differential equations *inhomogeneous*, if the source terms are zero the equations reduce to the homogeneous electromagnetic wave equations. The equations follow from Maxwell's equations.

There are various **mathematical descriptions of the electromagnetic field** that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

The **Liénard–Wiechert potentials** describe the classical electromagnetic effect of a moving electric point charge in terms of a vector potential and a scalar potential in the Lorenz gauge. Stemming directly from Maxwell's equations, these describe the complete, relativistically correct, time-varying electromagnetic field for a point charge in arbitrary motion, but are not corrected for quantum mechanical effects. Electromagnetic radiation in the form of waves can be obtained from these potentials. These expressions were developed in part by Alfred-Marie Liénard in 1898 and independently by Emil Wiechert in 1900.

In electrodynamics, the **retarded potentials** are the electromagnetic potentials for the electromagnetic field generated by time-varying electric current or charge distributions in the past. The fields propagate at the speed of light *c*, so the delay of the fields connecting cause and effect at earlier and later times is an important factor: the signal takes a finite time to propagate from a point in the charge or current distribution to another point in space, see figure below.

**Coulomb's law**, or **Coulomb's inverse-square law**, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called *electrostatic force* or **Coulomb force**. The law was first discovered in 1785 by French physicist Charles-Augustin de Coulomb, hence the name. Coulomb's law was essential to the development of the theory of electromagnetism, maybe even its starting point, as it made it possible to discuss the quantity of electric charge in a meaningful way.

The **electric dipole moment** is a measure of the separation of positive and negative electrical charges within a system, that is, a measure of the system's overall polarity. The SI units for electric dipole moment are coulomb-meter (C⋅m); however, a commonly used unit in atomic physics and chemistry is the debye (D).

**Lagrangian field theory** is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

- ↑ Feynman, R. P., R .B. Leighton, and M. Sands, 1965,
*The Feynman Lectures on Physics, Vol. II: the Electromagnetic Field*, Addison-Wesley, Reading, Massachusetts - ↑ Griffiths, David J. (2013).
*Introduction to Electrodynamics*(4th ed.). Boston, Mas.: Pearson. ISBN 978-0321856562. - ↑ Panofsky, W. K., and M. Phillips, 1969,
*Classical Electricity and Magnetism*, 2nd edition, Addison-Wesley, Reading, Massachusetts - ↑ Jackson, John D. (1998).
*Classical Electrodynamics*(3rd ed.). New York: Wiley. ISBN 978-0-471-30932-1. - ↑ Pauli, W., 1958,
*Theory of Relativity*, Pergamon, London - ↑ Whittaker, E. T., 1960,
*History of the Theories of the Aether and Electricity*, Harper Torchbooks, New York. - ↑ Pais, A., 1983,
*Subtle is the Lord: The Science and the Life of Albert Einstein*, Oxford University Press, Oxford - ↑ Bruce J. Hunt (1991) The Maxwellians
- ↑ Majak, J. (March 1978). "Effect of oxytocin and estradiol on the anterior pituitary gland of the rat".
*Endokrynologia Polska*.**29**(2): 147–156. ISSN 0423-104X. PMID 658017. - ↑ Peierls, Rudolf. Model-making in physics, Contemporary Physics, Volume 21 (1), January 1980, 3-17.

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.