Author | David Jeffrey Griffiths |
---|---|
Language | English |
Subject | Electromagnetism |
Genre | Non-fiction |
Publisher | Cambridge University |
Publication date | 1981, 1989, 1999, 2013, 2023 |
Publication place | United States |
Pages | xix + 602 + 4 |
ISBN | 978-1-009-39775-9 |
Introduction to Electrodynamics is a textbook by physicist David J. Griffiths. Generally regarded as a standard undergraduate text on the subject, [1] it began as lecture notes that have been perfected over time. [2] Its most recent edition, the fifth, was published in 2023 by Cambridge University. [3] This book uses SI units (the mks convention) exclusively. A table for converting between SI and Gaussian units is given in Appendix C. [4]
Griffiths said he was able to reduce the price of his textbook on quantum mechanics simply by changing the publisher, from Pearson to Cambridge University Press. [2] He has done the same with this one. (See the ISBN in the box to the right.)
Paul D. Scholten, a professor at Miami University (Ohio), opined that the first edition of this book offers a streamlined, though not always in-depth, coverage of the fundamental physics of electrodynamics. Special topics such as superconductivity or plasma physics are not mentioned. Breaking with tradition, Griffiths did not give solutions to all the odd-numbered questions in the book. Another unique feature of the first edition is the informal, even emotional, tone. The author sometimes referred to the reader directly. Physics received the primary focus. Equations are derived and explained, and common misconceptions are addressed. [5]
According to Robert W. Scharstein from the Department of Electrical Engineering at the University of Alabama, the mathematics used in the third edition is just enough to convey the subject and the problems are valuable teaching tools that do not involve the "plug and chug disease." Although students of electrical engineering are not expected to encounter complicated boundary-value problems in their career, [note 1] this book is useful to them as well, because of its emphasis on conceptual rather than mathematical issues. He argued that with this book, it is possible to skip the more mathematically involved sections to the more conceptually interesting topics, such as antennas. Moreover, the tone is clear and entertaining. Using this book "rejuvenated" his enthusiasm for teaching the subject. [6]
Colin Inglefield, an associate professor of physics at Weber State University (Utah), commented that the third edition is notable for its informal and conversational style that may appeal to a large class of students. The ordering of its chapters and its contents are fairly standard and are similar to texts at the same level. The first chapter offers a valuable review of vector calculus, which is essential for understanding this subject. While most other authors, including those aimed at a more advanced audience, denote the distance from the source point to the field point by , Griffiths uses a script (see figure). [note 2] Unlike some comparable books, the level of mathematical sophistication is not particularly high. For example, Green's functions are not anywhere mentioned. Instead, physical intuition and conceptual understanding are emphasized. In fact, care is taken to address common misconceptions and pitfalls. It contains no computer exercises. Nevertheless, it is perfectly adequate for undergraduate instruction in physics. As of June 2005, Inglefield has taught three semesters using this book. [7]
Physicists Yoni Kahn of Princeton University and Adam Anderson of the Fermi National Accelerator Laboratory indicated that Griffiths' Electrodynamics offers a dependable treatment of all materials in the electromagnetism section of the Physics Graduate Record Examinations (Physics GRE) except circuit analysis. [8]
In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interactions of atoms and molecules. Electromagnetism can be thought of as a combination of electrostatics and magnetism, which are distinct but closely intertwined phenomena. Electromagnetic forces occur between any two charged particles. Electric forces cause an attraction between particles with opposite charges and repulsion between particles with the same charge, while magnetism is an interaction that occurs between charged particles in relative motion. These two forces are described in terms of electromagnetic fields. Macroscopic charged objects are described in terms of Coulomb's law for electricity and Ampère's force law for magnetism; the Lorentz force describes microscopic charged particles.
An electromagnetic field is a physical field, mathematical functions of position and time, representing the influences on and due to electric charges. The field at any point in space and time can be regarded as a combination of an electric field and a magnetic field. Because of the interrelationship between the fields, a disturbance in the electric field can create a disturbance in the magnetic field which in turn affects the electric field, leading to an oscillation that propagates through space, known as an electromagnetic wave.
In physics, specifically electromagnetism, the Biot–Savart law is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current.
In physics, an observable is a physical property or physical quantity that can be measured. In classical mechanics, an observable is a real-valued "function" on the set of all possible system states, e.g., position and momentum. In quantum mechanics, an observable is an operator, or gauge, where the property of the quantum state can be determined by some sequence of operations. For example, these operations might involve submitting the system to various electromagnetic fields and eventually reading a value.
In science and especially in mathematical studies, a variational principle is one that enables a problem to be solved using calculus of variations, which concerns finding functions that optimize the values of quantities that depend on those functions. For example, the problem of determining the shape of a hanging chain suspended at both ends—a catenary—can be solved using variational calculus, and in this case, the variational principle is the following: The solution is a function that minimizes the gravitational potential energy of the chain.
David Jeffrey Griffiths is an American physicist and educator. He was on the faculty of Reed College from 1978 through 2009, becoming the Howard Vollum Professor of Science before his retirement. He wrote three highly regarded textbooks for undergraduate physics students.
Fundamentals of Physics is a calculus-based physics textbook by David Halliday, Robert Resnick, and Jearl Walker. The textbook is currently in its 12th edition.
Classical Mechanics is a textbook written by Herbert Goldstein, a professor at Columbia University. Intended for advanced undergraduate and beginning graduate students, it has been one of the standard references on its subject around the world since its first publication in 1950.
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain, and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena.
The Course of Theoretical Physics is a ten-volume series of books covering theoretical physics that was initiated by Lev Landau and written in collaboration with his student Evgeny Lifshitz starting in the late 1930s.
The Principles of Quantum Mechanics is an influential monograph on quantum mechanics written by Paul Dirac and first published by Oxford University Press in 1930. Dirac gives an account of quantum mechanics by "demonstrating how to construct a completely new theoretical framework from scratch"; "problems were tackled top-down, by working on the great principles, with the details left to look after themselves". It leaves classical physics behind after the first chapter, presenting the subject with a logical structure. Its 82 sections contain 785 equations with no diagrams.
The QED vacuum or quantum electrodynamic vacuum is the field-theoretic vacuum of quantum electrodynamics. It is the lowest energy state of the electromagnetic field when the fields are quantized. When the Planck constant is hypothetically allowed to approach zero, QED vacuum is converted to classical vacuum, which is to say, the vacuum of classical electromagnetism.
Classical Electrodynamics is a textbook written by theoretical particle and nuclear physicist John David Jackson. The book originated as lecture notes that Jackson prepared for teaching graduate-level electromagnetism first at McGill University and then at the University of Illinois at Urbana-Champaign. Intended for graduate students, and often known as Jackson for short, it has been a standard reference on its subject since its first publication in 1962.
Quantum Computation and Quantum Information is a textbook about quantum information science written by Michael Nielsen and Isaac Chuang, regarded as a standard text on the subject. It is informally known as "Mike and Ike", after the candies of that name. The book assumes minimal prior experience with quantum mechanics and with computer science, aiming instead to be a self-contained introduction to the relevant features of both. The focus of the text is on theory, rather than the experimental implementations of quantum computers, which are discussed more briefly.
Quantum Theory: Concepts and Methods is a 1993 quantum physics textbook by Israeli physicist Asher Peres. Well-regarded among the physics community, it is known for unconventional choices of topics to include.
Introduction to Quantum Mechanics, often called Griffiths, is an introductory textbook on quantum mechanics by David J. Griffiths. The book is considered a standard undergraduate textbook in the subject. Originally published by Pearson Education in 1995 with a second edition in 2005, Cambridge University Press (CUP) reprinted the second edition in 2017. In 2018, CUP released a third edition of the book with Darrell F. Schroeter as co-author; this edition is known as Griffiths and Schroeter.
Modern Quantum Mechanics, often called Sakurai or Sakurai and Napolitano, is a standard graduate-level quantum mechanics textbook written originally by J. J. Sakurai and edited by San Fu Tuan in 1985, with later editions coauthored by Jim Napolitano. Sakurai died in 1982 before he could finish the textbook and both the first edition of the book, published in 1985 by Benjamin Cummings, and the revised edition of 1994, published by Addison-Wesley, were edited and completed by Tuan posthumously. The book was updated by Napolitano and released two later editions. The second edition was initially published by Addison-Wesley in 2010 and rereleased as an eBook by Cambridge University Press, who released a third edition in 2020.
Introduction to Elementary Particles, by David Griffiths, is an introductory textbook that describes an accessible "coherent and unified theoretical structure" of particle physics, appropriate for advanced undergraduate physics students. It was originally published in 1987, and the second revised and enlarged edition was published 2008.