Articles about |
Electromagnetism |
---|
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems. [lower-alpha 1]
Lorentz tensors of the following kinds may be used in this article to describe bodies or particles:
The signs in the following tensor analysis depend on the convention used for the metric tensor. The convention used here is (+ − − −), corresponding to the Minkowski metric tensor:
The electromagnetic tensor is the combination of the electric and magnetic fields into a covariant antisymmetric tensor whose entries are B-field quantities. [1] and the result of raising its indices is where E is the electric field, B the magnetic field, and c the speed of light.
The four-current is the contravariant four-vector which combines electric charge density ρ and electric current density j:
The electromagnetic four-potential is a covariant four-vector containing the electric potential (also called the scalar potential) ϕ and magnetic vector potential (or vector potential) A, as follows:
The differential of the electromagnetic potential is
In the language of differential forms, which provides the generalisation to curved spacetimes, these are the components of a 1-form and a 2-form respectively. Here, is the exterior derivative and the wedge product.
The electromagnetic stress–energy tensor can be interpreted as the flux density of the momentum four-vector, and is a contravariant symmetric tensor that is the contribution of the electromagnetic fields to the overall stress–energy tensor: where is the electric permittivity of vacuum, μ0 is the magnetic permeability of vacuum, the Poynting vector is and the Maxwell stress tensor is given by
The electromagnetic field tensor F constructs the electromagnetic stress–energy tensor T by the equation: [2] where η is the Minkowski metric tensor (with signature (+ − − −)). Notice that we use the fact that which is predicted by Maxwell's equations.
In vacuum (or for the microscopic equations, not including macroscopic material descriptions), Maxwell's equations can be written as two tensor equations.
The two inhomogeneous Maxwell's equations, Gauss's Law and Ampère's law (with Maxwell's correction) combine into (with (+ − − −) metric): [3]
The homogeneous equations – Faraday's law of induction and Gauss's law for magnetism combine to form , which may be written using Levi-Civita duality as:
where Fαβ is the electromagnetic tensor, Jα is the four-current, εαβγδ is the Levi-Civita symbol, and the indices behave according to the Einstein summation convention.
Each of these tensor equations corresponds to four scalar equations, one for each value of β.
Using the antisymmetric tensor notation and comma notation for the partial derivative (see Ricci calculus), the second equation can also be written more compactly as:
In the absence of sources, Maxwell's equations reduce to: which is an electromagnetic wave equation in the field strength tensor.
The Lorenz gauge condition is a Lorentz-invariant gauge condition. (This can be contrasted with other gauge conditions such as the Coulomb gauge, which if it holds in one inertial frame will generally not hold in any other.) It is expressed in terms of the four-potential as follows:
In the Lorenz gauge, the microscopic Maxwell's equations can be written as:
Electromagnetic (EM) fields affect the motion of electrically charged matter: due to the Lorentz force. In this way, EM fields can be detected (with applications in particle physics, and natural occurrences such as in aurorae). In relativistic form, the Lorentz force uses the field strength tensor as follows. [4]
Expressed in terms of coordinate time t, it is: where pα is the four-momentum, q is the charge, and xβ is the position.
Expressed in frame-independent form, we have the four-force where uβ is the four-velocity, and τ is the particle's proper time, which is related to coordinate time by dt = γdτ.
The density of force due to electromagnetism, whose spatial part is the Lorentz force, is given by and is related to the electromagnetic stress–energy tensor by
The continuity equation: expresses charge conservation.
Using the Maxwell equations, one can see that the electromagnetic stress–energy tensor (defined above) satisfies the following differential equation, relating it to the electromagnetic tensor and the current four-vector or which expresses the conservation of linear momentum and energy by electromagnetic interactions.
In order to solve the equations of electromagnetism given here, it is necessary to add information about how to calculate the electric current, Jν. Frequently, it is convenient to separate the current into two parts, the free current and the bound current, which are modeled by different equations; where
Maxwell's macroscopic equations have been used, in addition the definitions of the electric displacement D and the magnetic intensity H: where M is the magnetization and P the electric polarization.
The bound current is derived from the P and M fields which form an antisymmetric contravariant magnetization-polarization tensor [1] [5] [6] [7] which determines the bound current
If this is combined with Fμν we get the antisymmetric contravariant electromagnetic displacement tensor which combines the D and H fields as follows:
The three field tensors are related by: which is equivalent to the definitions of the D and H fields given above.
The result is that Ampère's law, and Gauss's law, combine into one equation:
The bound current and free current as defined above are automatically and separately conserved
In vacuum, the constitutive relations between the field tensor and displacement tensor are:
Antisymmetry reduces these 16 equations to just six independent equations. Because it is usual to define Fμν by the constitutive equations may, in vacuum, be combined with the Gauss–Ampère law to get:
The electromagnetic stress–energy tensor in terms of the displacement is: where δαπ is the Kronecker delta. When the upper index is lowered with η, it becomes symmetric and is part of the source of the gravitational field.
Thus we have reduced the problem of modeling the current, Jν to two (hopefully) easier problems — modeling the free current, Jνfree and modeling the magnetization and polarization, . For example, in the simplest materials at low frequencies, one has where one is in the instantaneously comoving inertial frame of the material, σ is its electrical conductivity, χe is its electric susceptibility, and χm is its magnetic susceptibility.
The constitutive relations between the and F tensors, proposed by Minkowski for a linear materials (that is, E is proportional to D and B proportional to H), are: where u is the four-velocity of material, ε and μ are respectively the proper permittivity and permeability of the material (i.e. in rest frame of material), and denotes the Hodge star operator.
The Lagrangian density for classical electrodynamics is composed by two components: a field component and a source component:
In the interaction term, the four-current should be understood as an abbreviation of many terms expressing the electric currents of other charged fields in terms of their variables; the four-current is not itself a fundamental field.
The Lagrange equations for the electromagnetic lagrangian density can be stated as follows:
Noting the expression inside the square bracket is
The second term is
Therefore, the electromagnetic field's equations of motion are which is the Gauss–Ampère equation above.
Separating the free currents from the bound currents, another way to write the Lagrangian density is as follows:
Using Lagrange equation, the equations of motion for can be derived.
The equivalent expression in vector notation is:
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.
Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law. This is the first of two theorems proven by mathematician Emmy Noether in 1915 and published in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries of physical space.
In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.
Linear elasticity is a mathematical model of how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.
An electromagnetic four-potential is a relativistic vector function from which the electromagnetic field can be derived. It combines both an electric scalar potential and a magnetic vector potential into a single four-vector.
In differential geometry, the Einstein tensor is used to express the curvature of a pseudo-Riemannian manifold. In general relativity, it occurs in the Einstein field equations for gravitation that describe spacetime curvature in a manner that is consistent with conservation of energy and momentum.
In special and general relativity, the four-current is the four-dimensional analogue of the current density, with units of charge per unit time per unit area. Also known as vector current, it is used in the geometric context of four-dimensional spacetime, rather than separating time from three-dimensional space. Mathematically it is a four-vector and is Lorentz covariant.
In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written concisely, and allows for the quantization of the electromagnetic field by the Lagrangian formulation described below.
In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.
In physics, specifically for special relativity and general relativity, a four-tensor is an abbreviation for a tensor in a four-dimensional spacetime.
A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.
In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions.
In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.
There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.
The theory of special relativity plays an important role in the modern theory of classical electromagnetism. It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another. It sheds light on the relationship between electricity and magnetism, showing that frame of reference determines if an observation follows electric or magnetic laws. It motivates a compact and convenient notation for the laws of electromagnetism, namely the "manifestly covariant" tensor form.
In theoretical physics, relativistic Lagrangian mechanics is Lagrangian mechanics applied in the context of special relativity and general relativity.
In theoretical particle physics, the gluon field strength tensor is a second order tensor field characterizing the gluon interaction between quarks.
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.