Covariant classical field theory

Last updated

In mathematical physics, covariant classical field theory represents classical fields by sections of fiber bundles, and their dynamics is phrased in the context of a finite-dimensional space of fields. Nowadays, it is well known that[ citation needed ] jet bundles and the variational bicomplex are the correct domain for such a description. The Hamiltonian variant of covariant classical field theory is the covariant Hamiltonian field theory where momenta correspond to derivatives of field variables with respect to all world coordinates. Non-autonomous mechanics is formulated as covariant classical field theory on fiber bundles over the time axis .

Contents

Examples

Many important examples of classical field theories which are of interest in quantum field theory are given below. In particular, these are the theories which make up the Standard model of particle physics. These examples will be used in the discussion of the general mathematical formulation of classical field theory.

Uncoupled theories

Coupled theories

Requisite mathematical structures

In order to formulate a classical field theory, the following structures are needed:

Spacetime

A smooth manifold .

This is variously known as the world manifold (for emphasizing the manifold without additional structures such as a metric), spacetime (when equipped with a Lorentzian metric), or the base manifold for a more geometrical viewpoint.

Structures on spacetime

The spacetime often comes with additional structure. Examples are

  • Metric: a (pseudo-)Riemannian metric on .
  • Metric up to conformal equivalence

as well as the required structure of an orientation, needed for a notion of integration over all of the manifold .

Symmetries of spacetime

The spacetime may admit symmetries. For example, if it is equipped with a metric , these are the isometries of , generated by the Killing vector fields. The symmetries form a group , the automorphisms of spacetime. In this case the fields of the theory should transform in a representation of .

For example, for Minkowski space, the symmetries are the Poincaré group .

Gauge, principal bundles and connections

A Lie group describing the (continuous) symmetries of internal degrees of freedom. The corresponding Lie algebra through the Lie group–Lie algebra correspondence is denoted . This is referred to as the gauge group.

A principal -bundle , otherwise known as a -torsor. This is sometimes written as

where is the canonical projection map on and is the base manifold.

Connections and gauge fields

Here we take the view of the connection as a principal connection. In field theory this connection is also viewed as a covariant derivative whose action on various fields is defined later.

A principal connection denoted is a -valued 1-form on P satisfying technical conditions of 'projection' and 'right-equivariance': details found in the principal connection article.

Under a trivialization this can be written as a local gauge field, a -valued 1-form on a trivialization patch . It is this local form of the connection which is identified with gauge fields in physics. When the base manifold is flat, there are simplifications which remove this subtlety.

Associated vector bundles and matter content

An associated vector bundle associated to the principal bundle through a representation

For completeness, given a representation , the fiber of is .

A field or matter field is a section of an associated vector bundle. The collection of these, together with gauge fields, is the matter content of the theory.

Lagrangian

A Lagrangian: given a fiber bundle , the Lagrangian is a function .

Suppose that the matter content is given by sections of with fibre from above. Then for example, more concretely we may consider to be a bundle where the fibre at is . This then allows to be viewed as a functional of a field.

This completes the mathematical prerequisites for a large number of interesting theories, including those given in the examples section above.

Theories on flat spacetime

When the base manifold is flat, that is, (Pseudo-)Euclidean space, there are many useful simplifications that make theories less conceptually difficult to deal with.

The simplifications come from the observation that flat spacetime is contractible: it is then a theorem in algebraic topology that any fibre bundle over flat is trivial.

In particular, this allows us to pick a global trivialization of , and therefore identify the connection globally as a gauge field

Furthermore, there is a trivial connection which allows us to identify associated vector bundles as , and then we need not view fields as sections but simply as functions . In other words, vector bundles at different points are comparable. In addition, for flat spacetime the Levi-Civita connection is the trivial connection on the frame bundle.

Then the spacetime covariant derivative on tensor or spin-tensor fields is simply the partial derivative in flat coordinates. However the gauge covariant derivative may require a non-trivial connection which is considered to be the gauge field of the theory.

Accuracy as a physical model

In weak gravitational curvature, flat spacetime often serves as a good approximation to weakly curved spacetime. For experiment, this approximation is good. The Standard Model is defined on flat spacetime, and has produced the most accurate precision tests of physics to date.

See also

Related Research Articles

<span class="mw-page-title-main">Kaluza–Klein theory</span> Unified field theory

In physics, Kaluza–Klein theory is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to string theory. In their setup, the vacuum has the usual 3 dimensions of space and one dimension of time but with another microscopic extra spatial dimension in the shape of a tiny circle. Gunnar Nordström had an earlier, similar idea. But in that case, a fifth component was added to the electromagnetic vector potential, representing the Newtonian gravitational potential, and writing the Maxwell equations in five dimensions.

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a differential equation version of the relativistic energy–momentum relation .

In gauge theory and mathematical physics, a topological quantum field theory is a quantum field theory which computes topological invariants.

Teleparallelism, was an attempt by Albert Einstein to base a unified theory of electromagnetism and gravity on the mathematical structure of distant parallelism, also referred to as absolute or teleparallelism. In this theory, a spacetime is characterized by a curvature-free linear connection in conjunction with a metric tensor field, both defined in terms of a dynamical tetrad field.

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

Perturbative quantum chromodynamics is a subfield of particle physics in which the theory of strong interactions, Quantum Chromodynamics (QCD), is studied by using the fact that the strong coupling constant is small in high energy or short distance interactions, thus allowing perturbation theory techniques to be applied. In most circumstances, making testable predictions with QCD is extremely difficult, due to the infinite number of possible topologically-inequivalent interactions. Over short distances, the coupling is small enough that this infinite number of terms can be approximated accurately by a finite number of terms. Although only applicable at high energies, this approach has resulted in the most precise tests of QCD to date.

In physics, a sigma model is a field theory that describes the field as a point particle confined to move on a fixed manifold. This manifold can be taken to be any Riemannian manifold, although it is most commonly taken to be either a Lie group or a symmetric space. The model may or may not be quantized. An example of the non-quantized version is the Skyrme model; it cannot be quantized due to non-linearities of power greater than 4. In general, sigma models admit (classical) topological soliton solutions, for example, the Skyrmion for the Skyrme model. When the sigma field is coupled to a gauge field, the resulting model is described by Ginzburg–Landau theory. This article is primarily devoted to the classical field theory of the sigma model; the corresponding quantized theory is presented in the article titled "non-linear sigma model".

In physics, the gauge covariant derivative is a means of expressing how fields vary from place to place, in a way that respects how the coordinate systems used to describe a physical phenomenon can themselves change from place to place. The gauge covariant derivative is used in many areas of physics, including quantum field theory and fluid dynamics and in a very special way general relativity.

In theoretical physics, scalar electrodynamics is a theory of a U(1) gauge field coupled to a charged spin 0 scalar field that takes the place of the Dirac fermions in "ordinary" quantum electrodynamics. The scalar field is charged, and with an appropriate potential, it has the capacity to break the gauge symmetry via the Abelian Higgs mechanism.

In theoretical physics, the BRST formalism, or BRST quantization denotes a relatively rigorous mathematical approach to quantizing a field theory with a gauge symmetry. Quantization rules in earlier quantum field theory (QFT) frameworks resembled "prescriptions" or "heuristics" more than proofs, especially in non-abelian QFT, where the use of "ghost fields" with superficially bizarre properties is almost unavoidable for technical reasons related to renormalization and anomaly cancellation.

In differential geometry, the notion of a metric tensor can be extended to an arbitrary vector bundle, and to some principal fiber bundles. This metric is often called a bundle metric, or fibre metric.

<span class="mw-page-title-main">Gauge theory</span> Physical theory with fields invariant under the action of local "gauge" Lie groups

In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, do not change under local transformations according to certain smooth families of operations. Formally, the Lagrangian is invariant.

<span class="mw-page-title-main">Field (physics)</span> Physical quantities taking values at each point in space and time

In physics, a field is a physical quantity, represented by a scalar, vector, or tensor, that has a value for each point in space and time. For example, on a weather map, the surface temperature is described by assigning a number to each point on the map; the temperature can be considered at a certain point in time or over some interval of time, to study the dynamics of temperature change. A surface wind map, assigning an arrow to each point on a map that describes the wind speed and direction at that point, is an example of a vector field, i.e. a 1-dimensional (rank-1) tensor field. Field theories, mathematical descriptions of how field values change in space and time, are ubiquitous in physics. For instance, the electric field is another rank-1 tensor field, while electrodynamics can be formulated in terms of two interacting vector fields at each point in spacetime, or as a single-rank 2-tensor field.

This page is a glossary of terms in string theory, including related areas such as supergravity, supersymmetry, and high energy physics.

<span class="mw-page-title-main">Dirac equation in curved spacetime</span> Generalization of the Dirac equation

In mathematical physics, the Dirac equation in curved spacetime is a generalization of the Dirac equation from flat spacetime to curved spacetime, a general Lorentzian manifold.

In comparison with General Relativity, dynamic variables of metric-affine gravitation theory are both a pseudo-Riemannian metric and a general linear connection on a world manifold . Metric-affine gravitation theory has been suggested as a natural generalization of Einstein–Cartan theory of gravity with torsion where a linear connection obeys the condition that a covariant derivative of a metric equals zero.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.

In quantum field theory, scalar chromodynamics, also known as scalar quantum chromodynamics or scalar QCD, is a gauge theory consisting of a gauge field coupled to a scalar field. This theory is used experimentally to model the Higgs sector of the Standard Model.

References