Weyl equation

Last updated

In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions.

Contents

None of the elementary particles in the Standard Model are Weyl fermions. Previous to the confirmation of the neutrino oscillations, it was considered possible that the neutrino might be a Weyl fermion (it is now expected to be either a Dirac or a Majorana fermion). In condensed matter physics, some materials can display quasiparticles that behave as Weyl fermions, leading to the notion of Weyl semimetals.

Mathematically, any Dirac fermion can be decomposed as two Weyl fermions of opposite chirality coupled by the mass term. [1]

History

The Dirac equation was published in 1928 by Paul Dirac, and was first used to model spin-1/2 particles in the framework of relativistic quantum mechanics. [2] Hermann Weyl published his equation in 1929 as a simplified version of the Dirac equation. [2] [3] Wolfgang Pauli wrote in 1933 against Weyl's equation because it violated parity. [4] However, three years before, Pauli had predicted the existence of a new elementary fermion, the neutrino, to explain the beta decay, which eventually was described using the Weyl equation.

In 1937, Conyers Herring proposed that Weyl fermions may exist as quasiparticles in condensed matter. [5]

Neutrinos were experimentally observed in 1956 as particles with extremely small masses (and historically were even sometimes thought to be massless). [4] The same year the Wu experiment showed that parity could be violated by the weak interaction, addressing Pauli's criticism. [6] This was followed by the measurement of the neutrino's helicity in 1958. [4] As experiments showed no signs of a neutrino mass, interest in the Weyl equation resurfaced. Thus, the Standard Model was built under the assumption that neutrinos were Weyl fermions. [4]

While Italian physicist Bruno Pontecorvo had proposed in 1957 the possibility of neutrino masses and neutrino oscillations, [4] it was not until 1998 that Super-Kamiokande eventually confirmed the existence of neutrino oscillations, and their non-zero mass. [4] This discovery confirmed that Weyl's equation cannot completely describe the propagation of neutrinos, as the equations can only describe massless particles. [2]

In 2015, the first Weyl semimetal was demonstrated experimentally in crystalline tantalum arsenide (TaAs) by the collaboration of M.Z. Hasan's (Princeton University) and H. Ding's (Chinese Academy of Sciences) teams. [5] Independently, the same year, M. Soljačić team (Massachusetts Institute of Technology) also observed Weyl-like excitations in photonic crystals. [5]

Equation

The Weyl equation comes in two forms. The right-handed form can be written as follows: [7] [8] [9]

Expanding this equation, and inserting for the speed of light, it becomes

where

is a vector whose components are the 2×2 identity matrix for and the Pauli matrices for and is the wavefunction – one of the Weyl spinors. The left-handed form of the Weyl equation is usually written as:

where

The solutions of the right- and left-handed Weyl equations are different: they have right- and left-handed helicity, and thus chirality, respectively. It is convenient to indicate this explicitly, as follows: and

Plane wave solutions

The plane-wave solutions to the Weyl equation are referred to as the left and right handed Weyl spinors, each is with two components. Both have the form

,

where

is a momentum-dependent two-component spinor which satisfies

or

.

By direct manipulation, one obtains that

,

and concludes that the equations correspond to a particle that is massless. As a result, the magnitude of momentum relates directly to the wave-vector by the de Broglie relations as:

The equation can be written in terms of left and right handed spinors as:

Helicity

The left and right components correspond to the helicity of the particles, the projection of angular momentum operator onto the linear momentum :

Here

Lorentz invariance

Both equations are Lorentz invariant under the Lorentz transformation where More precisely, the equations transform as

where is the Hermitian transpose, provided that the right-handed field transforms as

The matrix is related to the Lorentz transform by means of the double covering of the Lorentz group by the special linear group given by

Thus, if the untransformed differential vanishes in one Lorentz frame, then it also vanishes in another. Similarly

provided that the left-handed field transforms as

Proof: Neither of these transformation properties are in any way "obvious", and so deserve a careful derivation. Begin with the form

for some unknown to be determined. The Lorentz transform, in coordinates, is

or, equivalently,

This leads to

In order to make use of the Weyl map

a few indexes must be raised and lowered. This is easier said than done, as it invokes the identity

where is the flat-space Minkowski metric. The above identity is often used to define the elements One takes the transpose:

to write

One thus regains the original form if that is, Performing the same manipulations for the left-handed equation, one concludes that

with [lower-alpha 1]

Relationship to Majorana

The Weyl equation is conventionally interpreted as describing a massless particle. However, with a slight alteration, one may obtain a two-component version of the Majorana equation. [10] This arises because the special linear group is isomorphic to the symplectic group The symplectic group is defined as the set of all complex 2×2 matrices that satisfy

where

The defining relationship can be rewritten as where is the complex conjugate. The right handed field, as noted earlier, transforms as

and so the complex conjugate field transforms as

Applying the defining relationship, one concludes that

which is exactly the same Lorentz covariance property noted earlier. Thus, the linear combination, using an arbitrary complex phase factor

transforms in a covariant fashion; setting this to zero gives the complex two-component Majorana equation. The Majorana equation is conventionally written as a four-component real equation, rather than a two-component complex equation; the above can be brought into four-component form (see that article for details). Similarly, the left-chiral Majorana equation (including an arbitrary phase factor ) is

As noted earlier, the left and right chiral versions are related by a parity transformation. The skew complex conjugate can be recognized as the charge conjugate form of Thus, the Majorana equation can be read as an equation that connects a spinor to its charge-conjugate form. The two distinct phases on the mass term are related to the two distinct eigenvalues of the charge conjugation operator; see charge conjugation and Majorana equation for details.

Define a pair of operators, the Majorana operators,

where is a short-hand reminder to take the complex conjugate. Under Lorentz transformations, these transform as

whereas the Weyl spinors transform as

just as above. Thus, the matched combinations of these are Lorentz covariant, and one may take

as a pair of complex 2-spinor Majorana equations.

The products and are both Lorentz covariant. The product is explicitly

Verifying this requires keeping in mind that and that The RHS reduces to the Klein–Gordon operator provided that , that is These two Majorana operators are thus "square roots" of the Klein–Gordon operator.

Lagrangian densities

The equations are obtained from the Lagrangian densities

By treating the spinor and its conjugate (denoted by ) as independent variables, the relevant Weyl equation is obtained.

Weyl spinors

The term Weyl spinor is also frequently used in a more general setting, as an element of a Clifford module. This is closely related to the solutions given above, and gives a natural geometric interpretation to spinors as geometric objects living on a manifold. This general setting has multiple strengths: it clarifies their interpretation as fermions in physics, and it shows precisely how to define spin in General Relativity, or, indeed, for any Riemannian manifold or pseudo-Riemannian manifold. This is informally sketched as follows.

The Weyl equation is invariant under the action of the Lorentz group. This means that, as boosts and rotations are applied, the form of the equation itself does not change. However, the form of the spinor itself does change. Ignoring spacetime entirely, the algebra of the spinors is described by a (complexified) Clifford algebra. The spinors transform under the action of the spin group. This is entirely analogous to how one might talk about a vector, and how it transforms under the rotation group, except that now, it has been adapted to the case of spinors.

Given an arbitrary pseudo-Riemannian manifold of dimension , one may consider its tangent bundle . At any given point the tangent space is a dimensional vector space. Given this vector space, one can construct the Clifford algebra on it. If are a vector space basis on , one may construct a pair of Weyl spinors as [11]

and

When properly examined in light of the Clifford algebra, these are naturally anti-commuting, that is, one has that This can be happily interpreted as the mathematical realization of the Pauli exclusion principle, thus allowing these abstractly defined formal structures to be interpreted as fermions. For dimensional Minkowski space-time, there are only two such spinors possible, by convention labelled "left" and "right", as described above. A more formal, general presentation of Weyl spinors can be found in the article on the spin group.

The abstract, general-relativistic form of the Weyl equation can be understood as follows: given a pseudo-Riemannian manifold one constructs a fiber bundle above it, with the spin group as the fiber. The spin group is a double cover of the special orthogonal group , and so one can identify the spin group fiber-wise with the frame bundle over When this is done, the resulting structure is called a spin structure.

Selecting a single point on the fiber corresponds to selecting a local coordinate frame for spacetime; two different points on the fiber are related by a (Lorentz) boost/rotation, that is, by a local change of coordinates. The natural inhabitants of the spin structure are the Weyl spinors, in that the spin structure completely describes how the spinors behave under (Lorentz) boosts/rotations.

Given a spin manifold, the analog of the metric connection is the spin connection; this is effectively "the same thing" as the normal connection, just with spin indexes attached to it in a consistent fashion. The covariant derivative can be defined in terms of the connection in an entirely conventional way. It acts naturally on the Clifford bundle; the Clifford bundle is the space in which the spinors live. The general exploration of such structures and their relationships is termed spin geometry.

Mathematical definition

For even , the even subalgebra of the complex Clifford algebra is isomorphic to , where . A left-handed (respectively, right-handed) complex Weyl spinor in -dimensional space is an element of (respectively, ).

Special cases

There are three important special cases that can be constructed from Weyl spinors. One is the Dirac spinor, which can be taken to be a pair of Weyl spinors, one left-handed, and one right-handed. These are coupled together in such a way as to represent an electrically charged fermion field. The electric charge arises because the Dirac field transforms under the action of the complexified spin group This group has the structure

where is the circle, and can be identified with the of electromagnetism. The product is just fancy notation denoting the product with opposite points identified (a double covering).

The Majorana spinor is again a pair of Weyl spinors, but this time arranged so that the left-handed spinor is the charge conjugate of the right-handed spinor. The result is a field with two less degrees of freedom than the Dirac spinor. It is unable to interact with the electromagnetic field, since it transforms as a scalar under the action of the group. That is, it transforms as a spinor, but transversally, such that it is invariant under the action of the spin group.

The third special case is the ELKO spinor, constructed much as the Majorana spinor, except with an additional minus sign between the charge-conjugate pair. This again renders it electrically neutral, but introduces a number of other quite surprising properties.

Notes

  1. The results presented here are identical to those of Aste (2010) [10] equations 52 and 57, although the derivation performed here is completely different. The double-covering used here is also identical to Aste's equation 48, and to the current version (December 2020) of the Wikipedia article on the Lorentz group.

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.

In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group.

<span class="mw-page-title-main">Relativistic wave equations</span> Wave equations respecting special and general relativity

In physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields. The solutions to the equations, universally denoted as ψ or Ψ, are referred to as "wave functions" in the context of RQM, and "fields" in the context of QFT. The equations themselves are called "wave equations" or "field equations", because they have the mathematical form of a wave equation or are generated from a Lagrangian density and the field-theoretic Euler–Lagrange equations.

In theoretical physics, the Rarita–Schwinger equation is the relativistic field equation of spin-3/2 fermions in a four-dimensional flat spacetime. It is similar to the Dirac equation for spin-1/2 fermions. This equation was first introduced by William Rarita and Julian Schwinger in 1941.

In theoretical physics, the Wess–Zumino model has become the first known example of an interacting four-dimensional quantum field theory with linearly realised supersymmetry. In 1974, Julius Wess and Bruno Zumino studied, using modern terminology, dynamics of a single chiral superfield whose cubic superpotential leads to a renormalizable theory. It is a special case of 4D N = 1 global supersymmetry.

In mathematical physics, the gamma matrices, also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin particles. Gamma matrices were introduced by Paul Dirac in 1928.

In physics, the Majorana equation is a relativistic wave equation. It is named after the Italian physicist Ettore Majorana, who proposed it in 1937 as a means of describing fermions that are their own antiparticle. Particles corresponding to this equation are termed Majorana particles, although that term now has a more expansive meaning, referring to any fermionic particle that is its own anti-particle.

In differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz transformations. In some canonical formulations of general relativity, a spin connection is defined on spatial slices and can also be regarded as the gauge field generated by local rotations.

In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-1/2 particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927. In its linearized form it is known as Lévy-Leblond equation.

In mathematical physics, spacetime algebra (STA) is the application of Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4) to physics. Spacetime algebra provides a "unified, coordinate-free formulation for all of relativistic physics, including the Dirac equation, Maxwell equation and General Relativity" and "reduces the mathematical divide between classical, quantum and relativistic physics."

In mathematical physics, the Dirac algebra is the Clifford algebra . This was introduced by the mathematical physicist P. A. M. Dirac in 1928 in developing the Dirac equation for spin-1/2 particles with a matrix representation of the gamma matrices, which represent the generators of the algebra.

In physics, and specifically in quantum field theory, a bispinor is a mathematical construction that is used to describe some of the fundamental particles of nature, including quarks and electrons. It is a specific embodiment of a spinor, specifically constructed so that it is consistent with the requirements of special relativity. Bispinors transform in a certain "spinorial" fashion under the action of the Lorentz group, which describes the symmetries of Minkowski spacetime. They occur in the relativistic spin-1/2 wave function solutions to the Dirac equation.

In general relativity, the Vaidya metric describes the non-empty external spacetime of a spherically symmetric and nonrotating star which is either emitting or absorbing null dusts. It is named after the Indian physicist Prahalad Chunnilal Vaidya and constitutes the simplest non-static generalization of the non-radiative Schwarzschild solution to Einstein's field equation, and therefore is also called the "radiating(shining) Schwarzschild metric".

In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the stress–energy tensor that is constructed from the canonical stress–energy tensor and the spin current so as to be symmetric yet still conserved.

<span class="mw-page-title-main">Dirac equation in curved spacetime</span> Generalization of the Dirac equation

In mathematical physics, the Dirac equation in curved spacetime is a generalization of the Dirac equation from flat spacetime to curved spacetime, a general Lorentzian manifold.

<span class="mw-page-title-main">Symmetry in quantum mechanics</span> Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems. In application, understanding symmetries can also provide insights on the eigenstates that can be expected. For example, the existence of degenerate states can be inferred by the presence of non commuting symmetry operators or that the non degenerate states are also eigenvectors of symmetry operators.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

In mathematical physics, the Gordon decomposition of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.

In string theory, the Ramond–Neveu–Schwarz (RNS) formalism is an approach to formulating superstrings in which the worldsheet has explicit superconformal invariance but spacetime supersymmetry is hidden, in contrast to the Green–Schwarz formalism where the latter is explicit. It was originally developed by Pierre Ramond, André Neveu and John Schwarz in the RNS model in 1971, which gives rise to type II string theories and can also give type I string theory. Heterotic string theories can also be acquired through this formalism by using a different worldsheet action. There are various ways to quantize the string within this framework including light-cone quantization, old canonical quantization, and BRST quantization. A consistent string theory is only acquired if the spectrum of states is restricted through a procedure known as a GSO projection, with this projection being automatically present in the Green–Schwarz formalism.

In theoretical physics, more specifically in quantum field theory and supersymmetry, supersymmetric Yang–Mills, also known as super Yang–Mills and abbreviated to SYM, is a supersymmetric generalization of Yang–Mills theory, which is a gauge theory that plays an important part in the mathematical formulation of forces in particle physics. It is a special case of 4D N = 1 global supersymmetry.

References

  1. Shifman, Mikhail (1999). ITEP Lectures on Particle Physics and Field Theory. Vol. 1. p. 292. ISBN   9789810239480.
  2. 1 2 3 Pal, Palash B. (2011). "Dirac, Majorana, and Weyl fermions". American Journal of Physics. 79 (5): 485–498. arXiv: 1006.1718 . Bibcode:2011AmJPh..79..485P. doi:10.1119/1.3549729. ISSN   0002-9505. S2CID   118685467.
  3. Weyl, Hermann (1929-04-15). "Gravitation and the electron". Proceedings of the National Academy of Sciences. 15 (4): 323–334. Bibcode:1929PNAS...15..323W. doi: 10.1073/pnas.15.4.323 . ISSN   0027-8424. PMC   522457 . PMID   16587474.
  4. 1 2 3 4 5 6 Bilenky, S.M. (2005). "The history of neutrino oscillations". Physica Scripta. T121: 17–22. arXiv: hep-ph/0410090 . Bibcode:2005PhST..121...17B. doi:10.1088/0031-8949/2005/T121/001. ISSN   0031-8949. S2CID   119341278.
  5. 1 2 3 Vishwanath, Ashvin (2015-09-08). "Where the Weyl things are". APS Physics. Vol. 8.
  6. Wu, C. S.; Ambler, E.; Hayward, R. W.; Hoppes, D. D.; Hudson, R. P. (1957). "Experimental Test of Parity Conservation in Beta Decay". Physical Review . 105 (4): 1413–1415. Bibcode:1957PhRv..105.1413W. doi: 10.1103/PhysRev.105.1413 .
  7. Pearson, E. Abers, ed. (2004). Quantum Mechanics. Addison Wesley, Prentice Hall Inc. ISBN   978-0-13-146100-0.
  8. Woan, G., ed. (2010). The Cambridge Handbook of Physics Formulas. Cambridge University Press. ISBN   978-0-521-57507-2.
  9. Peskin, M.E.; Schroeder, D.V. (1995). An Introduction to Quantum Field Theory. Addison-Wesley. ISBN   0-201-50397-2 via Google Books.
  10. 1 2 Aste, Andreas (2010). "A direct road to Majorana fields". Symmetry. Vol. 2010, no. 2. pp. 1776–1809. doi: 10.3390/sym2041776 . ISSN   2073-8994.
  11. Jost, Jurgen (2002). Riemannian Geometry and Geometric Analysis (3rd ed.). Springer Universitext.

Further reading