Heinrich Leutwyler

Last updated
Heinrich Leutwyler
Born (1938-10-12) October 12, 1938 (age 85)
Alma mater University of Bern
Known for Quantum chromodynamics
Chiral perturbation theory
Awards Humboldt Award (2000)
Pomeranchuk Prize (2011)
Sakurai Prize (2023)
Scientific career
Fields Theoretical physics
Institutions University of Bern
Doctoral advisor John R. Klauder
Website www.leutwyler.itp.unibe.ch

Heinrich Leutwyler (born Oct 12, 1938) is a Swiss theoretical physicist, with interests in elementary particle physics, the theory of strong interactions, and quantum field theory. [1]

Contents

Early life and education

Leutwyler went to the Gymnasium in Bern and studied physics, mathematics, and astronomy at the University of Bern. After the diploma in 1960 he went to the US, including Princeton. In 1962 he received his PhD under the supervision of John R. Klauder (at Bell Laboratories at the time), for his thesis entitled "Generally covariant Dirac equation and associated Boson Fields."

Career

In 1965 he got his habilitation in Bern, where he became assistant professor in the same year and full professor in 1969, until his retirement in 2000.

In 1983/84 he was dean of the Faculty of Sciences. Leutwyler spent research visits at the Bell Labs in Murray Hill (1963, 1965), at Caltech in Pasadena (1973/74), and at CERN (1969/70, 1983/84, and 1996). Together with Murray Gell-Mann and Harald Fritzsch, Leutwyler was crucially involved in establishing quantum chromodynamics (QCD) as the fundamental theory of strong interactions. [2] Together with Jürg Gasser he performed influential work on chiral perturbation theory, [3] [4] an effective field theory describing QCD at low energies, including the Gasser-Leutwyler coefficients of the effective Lagrangian and the determination of current quark masses.

Leutwyler received an honorary doctorate of the Johannes Gutenberg University Mainz (1995), the Humboldt Award (2000), the Pomeranchuk Prize (2011), and the Sakurai Prize (2023). [5]

Personal life

He is married and has two children.

Publications

Related Research Articles

In physics, the fundamental interactions or fundamental forces are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist:

<span class="mw-page-title-main">Gluon</span> Elementary particle that mediates the strong force

A gluon is a type of massless elementary particle that mediates the strong interaction between quarks, acting as the exchange particle for the interaction. Gluons are massless vector bosons, thereby having a spin of 1. Through the strong interaction, gluons bind quarks into groups according to quantum chromodynamics (QCD), forming hadrons such as protons and neutrons.

<span class="mw-page-title-main">Murray Gell-Mann</span> American physicist (1929–2019)

Murray Gell-Mann was an American physicist who played a preeminent role in the development of the theory of elementary particles. Gell-Mann introduced the concept of quarks as the fundamental building blocks of the strongly interacting particles, and the renormalization group as a foundational element of quantum field theory and statistical mechanics. He played key roles in developing the concept of chirality in the theory of the weak interactions and spontaneous chiral symmetry breaking in the strong interactions, which controls the physics of the light mesons. In the 1970s he was a co-inventor of quantum chromodynamics (QCD) which explains the confinement of quarks in mesons and baryons and forms a large part of the Standard Model of elementary particles and forces.

<span class="mw-page-title-main">Quark</span> Elementary particle, main constituent of matter

A quark is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly observable matter is composed of up quarks, down quarks and electrons. Owing to a phenomenon known as color confinement, quarks are never found in isolation; they can be found only within hadrons, which include baryons and mesons, or in quark–gluon plasmas. For this reason, much of what is known about quarks has been drawn from observations of hadrons.

<span class="mw-page-title-main">Quantum chromodynamics</span> Theory of the strong nuclear interactions

In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group SU(3). The QCD analog of electric charge is a property called color. Gluons are the force carriers of the theory, just as photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of particle physics. A large body of experimental evidence for QCD has been gathered over the years.

<span class="mw-page-title-main">Standard Model</span> Theory of forces and subatomic particles

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

In quantum field theory, asymptotic freedom is a property of some gauge theories that causes interactions between particles to become asymptotically weaker as the energy scale increases and the corresponding length scale decreases.

<span class="mw-page-title-main">Coupling constant</span> Parameter describing the strength of a force

In physics, a coupling constant or gauge coupling parameter, is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between two static bodies to the "charges" of the bodies divided by the distance squared, , between the bodies; thus: in for Newtonian gravity and in for electrostatic. This description remains valid in modern physics for linear theories with static bodies and massless force carriers.

Quark matter or QCD matter refers to any of a number of hypothetical phases of matter whose degrees of freedom include quarks and gluons, of which the prominent example is quark-gluon plasma. Several series of conferences in 2019, 2020, and 2021 were devoted to this topic.

In particle physics, flavour or flavor refers to the species of an elementary particle. The Standard Model counts six flavours of quarks and six flavours of leptons. They are conventionally parameterized with flavour quantum numbers that are assigned to all subatomic particles. They can also be described by some of the family symmetries proposed for the quark-lepton generations.

The QCD vacuum is the quantum vacuum state of quantum chromodynamics (QCD). It is an example of a non-perturbative vacuum state, characterized by non-vanishing condensates such as the gluon condensate and the quark condensate in the complete theory which includes quarks. The presence of these condensates characterizes the confined phase of quark matter.

<span class="mw-page-title-main">Quark model</span> Classification scheme of hadrons

In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks that give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Eightfold Way, the successful classification scheme organizing the large number of lighter hadrons that were being discovered starting in the 1950s and continuing through the 1960s. It received experimental verification beginning in the late 1960s and is a valid and effective classification of them to date. The model was independently proposed by physicists Murray Gell-Mann, who dubbed them "quarks" in a concise paper, and George Zweig, who suggested "aces" in a longer manuscript. André Petermann also touched upon the central ideas from 1963 to 1965, without as much quantitative substantiation. Today, the model has essentially been absorbed as a component of the established quantum field theory of strong and electroweak particle interactions, dubbed the Standard Model.

Chiral perturbation theory (ChPT) is an effective field theory constructed with a Lagrangian consistent with the (approximate) chiral symmetry of quantum chromodynamics (QCD), as well as the other symmetries of parity and charge conjugation. ChPT is a theory which allows one to study the low-energy dynamics of QCD on the basis of this underlying chiral symmetry.

In particle physics, chiral symmetry breaking generally refers to the dynamical spontaneous breaking of a chiral symmetry associated with massless fermions. This is usually associated with a gauge theory such as quantum chromodynamics, the quantum field theory of the strong interaction, and it also occurs through the Brout-Englert-Higgs mechanism in the electroweak interactions of the standard model. This phenomenon is analogous to magnetization and superconductivity in condensed matter physics. The basic idea was introduced to particle physics by Yoichiro Nambu, in particular, in the Nambu–Jona-Lasinio model, which is a solvable theory of composite bosons that exhibits dynamical spontaneous chiral symmetry when a 4-fermion coupling constant becomes sufficiently large. Nambu was awarded the 2008 Nobel prize in physics "for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics".

In particle physics phenomenology, chiral color is a speculative model which extends quantum chromodynamics (QCD), the generally accepted theory for the strong interactions of quarks. QCD is a gauge field theory based on a gauge group known as color SU(3)C with an octet of colored gluons acting as the force carriers between a triplet of colored quarks.

<span class="mw-page-title-main">William A. Bardeen</span> American theoretical physicist

William Allan Bardeen is an American theoretical physicist who worked at the Fermi National Accelerator Laboratory. He is renowned for his foundational work on the chiral anomaly, the Yang-Mills and gravitational anomalies, the development of quantum chromodynamics and the scheme frequently used in perturbative analysis of experimentally observable processes such as deep inelastic scattering, high energy collisions and flavor changing processes.

Quantum chromodynamics binding energy, gluon binding energy or chromodynamic binding energy is the energy binding quarks together into hadrons. It is the energy of the field of the strong force, which is mediated by gluons. Motion-energy and interaction-energy contribute most of the hadron's mass.

Alfred H. Mueller is an American theoretical physicist, and the Enrico Fermi Professor of Physics at Columbia University.

<span class="mw-page-title-main">Gluon field strength tensor</span> Second rank tensor in quantum chromodynamics

In theoretical particle physics, the gluon field strength tensor is a second order tensor field characterizing the gluon interaction between quarks.

Lance Jenkins Dixon is an American theoretical particle physicist. He is a professor in the SLAC Theory Group at the Stanford Linear Accelerator Center (SLAC) at Stanford University.

References

  1. "Curriculum Vitae"; accessed October 13, 2022.
  2. "Advantages of the color octet gluon picture" . Retrieved 13 October 2022.
  3. "Chiral perturbation theory to one loop" . Retrieved 13 October 2022.
  4. "Chiral perturbation theory: Expansions in the mass of the strange quark" . Retrieved 13 October 2022.
  5. "2023 J. J. Sakurai Prize for Theoretical Particle Physics Recipient" . Retrieved 13 October 2022.