In differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz transformations. In some canonical formulations of general relativity, a spin connection is defined on spatial slices and can also be regarded as the gauge field generated by local rotations.
The spin connection occurs in two common forms: the Levi-Civita spin connection, when it is derived from the Levi-Civita connection, and the affine spin connection, when it is obtained from the affine connection. The difference between the two of these is that the Levi-Civita connection is by definition the unique torsion-free connection, whereas the affine connection (and so the affine spin connection) may contain torsion.
Let be the local Lorentz frame fields or vierbein (also known as a tetrad), which is a set of orthonormal space time vector fields that diagonalize the metric tensor
where is the spacetime metric and is the Minkowski metric. Here, Latin letters denote the local Lorentz frame indices; Greek indices denote general coordinate indices. This simply expresses that , when written in terms of the basis , is locally flat. The Greek vierbein indices can be raised or lowered by the metric, i.e. or . The Latin or "Lorentzian" vierbein indices can be raised or lowered by or respectively. For example, and
The torsion-free spin connection is given by
where are the Christoffel symbols. This definition should be taken as defining the torsion-free spin connection, since, by convention, the Christoffel symbols are derived from the Levi-Civita connection, which is the unique metric compatible, torsion-free connection on a Riemannian Manifold. In general, there is no restriction: the spin connection may also contain torsion.
Note that using the gravitational covariant derivative of the contravariant vector . The spin connection may be written purely in terms of the vierbein field as [1]
which by definition is anti-symmetric in its internal indices .
The spin connection defines a covariant derivative on generalized tensors. For example, its action on is
In the Cartan formalism, the spin connection is used to define both torsion and curvature. These are easiest to read by working with differential forms, as this hides some of the profusion of indexes. The equations presented here are effectively a restatement of those that can be found in the article on the connection form and the curvature form. The primary difference is that these retain the indexes on the vierbein, instead of completely hiding them. More narrowly, the Cartan formalism is to be interpreted in its historical setting, as a generalization of the idea of an affine connection to a homogeneous space; it is not yet as general as the idea of a principal connection on a fiber bundle. It serves as a suitable half-way point between the narrower setting in Riemannian geometry and the fully abstract fiber bundle setting, thus emphasizing the similarity to gauge theory. Note that Cartan's structure equations, as expressed here, have a direct analog: the Maurer–Cartan equations for Lie groups (that is, they are the same equations, but in a different setting and notation).
Writing the vierbeins as differential forms
for the orthonormal coordinates on the cotangent bundle, the affine spin connection one-form is
The torsion 2-form is given by
while the curvature 2-form is
These two equations, taken together are called Cartan's structure equations. [2] Consistency requires that the Bianchi identities be obeyed. The first Bianchi identity is obtained by taking the exterior derivative of the torsion:
while the second by differentiating the curvature:
The covariant derivative for a generic differential form of degree p is defined by
Bianchi's second identity then becomes
The difference between a connection with torsion, and the unique torsionless connection is given by the contorsion tensor. Connections with torsion are commonly found in theories of teleparallelism, Einstein–Cartan theory, gauge theory gravity and supergravity.
It is easy to deduce by raising and lowering indices as needed that the frame fields defined by will also satisfy and . We expect that will also annihilate the Minkowski metric ,
This implies that the connection is anti-symmetric in its internal indices, This is also deduced by taking the gravitational covariant derivative which implies that thus ultimately, . This is sometimes called the metricity condition; [2] it is analogous to the more commonly stated metricity condition that Note that this condition holds only for the Levi-Civita spin connection, and not for the affine spin connection in general.
By substituting the formula for the Christoffel symbols written in terms of the , the spin connection can be written entirely in terms of the ,
where antisymmetrization of indices has an implicit factor of 1/2.
This formula can be derived another way. To directly solve the compatibility condition for the spin connection , one can use the same trick that was used to solve for the Christoffel symbols . First contract the compatibility condition to give
Then, do a cyclic permutation of the free indices and , and add and subtract the three resulting equations:
where we have used the definition . The solution for the spin connection is
From this we obtain the same formula as before.
The spin connection arises in the Dirac equation when expressed in the language of curved spacetime, see Dirac equation in curved spacetime. Specifically there are problems coupling gravity to spinor fields: there are no finite-dimensional spinor representations of the general covariance group. However, there are of course spinorial representations of the Lorentz group. This fact is utilized by employing tetrad fields describing a flat tangent space at every point of spacetime. The Dirac matrices are contracted onto vierbiens,
We wish to construct a generally covariant Dirac equation. Under a flat tangent space Lorentz transformation the spinor transforms as
We have introduced local Lorentz transformations on flat tangent space generated by the 's, such that is a function of space-time. This means that the partial derivative of a spinor is no longer a genuine tensor. As usual, one introduces a connection field that allows us to gauge the Lorentz group. The covariant derivative defined with the spin connection is,
and is a genuine tensor and Dirac's equation is rewritten as
The generally covariant fermion action couples fermions to gravity when added to the first order tetradic Palatini action,
where and is the curvature of the spin connection.
The tetradic Palatini formulation of general relativity which is a first order formulation of the Einstein–Hilbert action where the tetrad and the spin connection are the basic independent variables. In the 3+1 version of Palatini formulation, the information about the spatial metric, , is encoded in the triad (three-dimensional, spatial version of the tetrad). Here we extend the metric compatibility condition to , that is, and we obtain a formula similar to the one given above but for the spatial spin connection .
The spatial spin connection appears in the definition of Ashtekar–Barbero variables which allows 3+1 general relativity to be rewritten as a special type of Yang–Mills gauge theory. One defines . The Ashtekar–Barbero connection variable is then defined as where and is the extrinsic curvature and is the Immirzi parameter. With as the configuration variable, the conjugate momentum is the densitized triad . With 3+1 general relativity rewritten as a special type of Yang–Mills gauge theory, it allows the importation of non-perturbative techniques used in Quantum chromodynamics to canonical quantum general relativity.
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1⁄2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.
In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.
In physics, the Polyakov action is an action of the two-dimensional conformal field theory describing the worldsheet of a string in string theory. It was introduced by Stanley Deser and Bruno Zumino and independently by L. Brink, P. Di Vecchia and P. S. Howe in 1976, and has become associated with Alexander Polyakov after he made use of it in quantizing the string in 1981. The action reads:
In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.
When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.
In mathematical physics, the gamma matrices, also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin particles.
In physics, the Majorana equation is a relativistic wave equation. It is named after the Italian physicist Ettore Majorana, who proposed it in 1937 as a means of describing fermions that are their own antiparticle. Particles corresponding to this equation are termed Majorana particles, although that term now has a more expansive meaning, referring to any fermionic particle that is its own anti-particle.
A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.
In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.
In the theory of general relativity, a stress–energy–momentum pseudotensor, such as the Landau–Lifshitz pseudotensor, is an extension of the non-gravitational stress–energy tensor that incorporates the energy–momentum of gravity. It allows the energy–momentum of a system of gravitating matter to be defined. In particular it allows the total of matter plus the gravitating energy–momentum to form a conserved current within the framework of general relativity, so that the total energy–momentum crossing the hypersurface of any compact space–time hypervolume vanishes.
In mathematical physics, spacetime algebra (STA) is a name for the Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4). According to David Hestenes, spacetime algebra can be particularly closely associated with the geometry of special relativity and relativistic spacetime.
In mathematical physics, the Dirac algebra is the Clifford algebra . This was introduced by the mathematical physicist P. A. M. Dirac in 1928 in developing the Dirac equation for spin-½ particles with a matrix representation of the gamma matrices, which represent the generators of the algebra.
In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the energy–momentum tensor that is constructed from the canonical energy–momentum tensor and the spin current so as to be symmetric yet still conserved.
In mathematical physics, the Dirac equation in curved spacetime is a generalization of the Dirac equation from flat spacetime to curved spacetime, a general Lorentzian manifold.
Affine gauge theory is classical gauge theory where gauge fields are affine connections on the tangent bundle over a smooth manifold . For instance, these are gauge theory of dislocations in continuous media when , the generalization of metric-affine gravitation theory when is a world manifold and, in particular, gauge theory of the fifth force.
Attempts have been made to describe gauge theories in terms of extended objects such as Wilson loops and holonomies. The loop representation is a quantum hamiltonian representation of gauge theories in terms of loops. The aim of the loop representation in the context of Yang–Mills theories is to avoid the redundancy introduced by Gauss gauge symmetries allowing to work directly in the space of physical states. The idea is well known in the context of lattice Yang–Mills theory. Attempts to explore the continuous loop representation was made by Gambini and Trias for canonical Yang–Mills theory, however there were difficulties as they represented singular objects. As we shall see the loop formalism goes far beyond a simple gauge invariant description, in fact it is the natural geometrical framework to treat gauge theories and quantum gravity in terms of their fundamental physical excitations.
In mathematical physics, the Gordon decomposition of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.
In theoretical physics, the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric-magnetic duality, as an S-duality, predicted by some formulations of supergravity in eleven dimensions.