In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group.
Dirac spinors are important and interesting in numerous ways. Foremost, they are important as they do describe all of the known fundamental particle fermions in nature; this includes the electron and the quarks. Algebraically they behave, in a certain sense, as the "square root" of a vector. This is not readily apparent from direct examination, but it has slowly become clear over the last 60 years that spinorial representations are fundamental to geometry. For example, effectively all Riemannian manifolds can have spinors and spin connections built upon them, via the Clifford algebra. [1] The Dirac spinor is specific to that of Minkowski spacetime and Lorentz transformations; the general case is quite similar.
This article is devoted to the Dirac spinor in the Dirac representation. This corresponds to a specific representation of the gamma matrices, and is best suited for demonstrating the positive and negative energy solutions of the Dirac equation. There are other representations, most notably the chiral representation, which is better suited for demonstrating the chiral symmetry of the solutions to the Dirac equation. The chiral spinors may be written as linear combinations of the Dirac spinors presented below; thus, nothing is lost or gained, other than a change in perspective with regards to the discrete symmetries of the solutions.
The remainder of this article is laid out in a pedagogical fashion, using notations and conventions specific to the standard presentation of the Dirac spinor in textbooks on quantum field theory. It focuses primarily on the algebra of the plane-wave solutions. The manner in which the Dirac spinor transforms under the action of the Lorentz group is discussed in the article on bispinors.
The Dirac spinor is the bispinor in the plane-wave ansatz of the free Dirac equation for a spinor with mass , which, in natural units becomes and with Feynman slash notation may be written
An explanation of terms appearing in the ansatz is given below.
The Dirac spinor for the positive-frequency solution can be written as where
In natural units, when m2 is added to p2 or when m is added to , m means mc in ordinary units; when m is added to E, m means mc2 in ordinary units. When m is added to or to it means (which is called the inverse reduced Compton wavelength ) in ordinary units.
The Dirac equation has the form
In order to derive an expression for the four-spinor ω, the matrices α and β must be given in concrete form. The precise form that they take is representation-dependent. For the entirety of this article, the Dirac representation is used. In this representation, the matrices are
These two 4×4 matrices are related to the Dirac gamma matrices. Note that 0 and I are 2×2 matrices here.
The next step is to look for solutions of the form while at the same time splitting ω into two two-spinors:
Using all of the above information to plug into the Dirac equation results in This matrix equation is really two coupled equations:
Solve the 2nd equation for χ and one obtains
Note that this solution needs to have in order for the solution to be valid in a frame where the particle has .
Derivation of the sign of the energy in this case. We consider the potentially problematic term .
Hence the negative solution clearly has to be omitted, and . End derivation.
Assembling these pieces, the full positive energy solution is conventionally written as The above introduces a normalization factor derived in the next section.
Solving instead the 1st equation for a different set of solutions are found:
In this case, one needs to enforce that for this solution to be valid in a frame where the particle has . The proof follows analogously to the previous case. This is the so-called negative energy solution. It can sometimes become confusing to carry around an explicitly negative energy, and so it is conventional to flip the sign on both the energy and the momentum, and to write this as
In further development, the -type solutions are referred to as the particle solutions, describing a positive-mass spin-1/2 particle carrying positive energy, and the -type solutions are referred to as the antiparticle solutions, again describing a positive-mass spin-1/2 particle, again carrying positive energy. In the laboratory frame, both are considered to have positive mass and positive energy, although they are still very much dual to each other, with the flipped sign on the antiparticle plane-wave suggesting that it is "travelling backwards in time". The interpretation of "backwards-time" is a bit subjective and imprecise, amounting to hand-waving when one's only evidence are these solutions. It does gain stronger evidence when considering the quantized Dirac field. A more precise meaning for these two sets of solutions being "opposite to each other" is given in the section on charge conjugation, below.
In the chiral representation for , the solution space is parametrised by a vector , with Dirac spinor solution where are Pauli 4-vectors and is the Hermitian matrix square-root.
In the Dirac representation, the most convenient definitions for the two-spinors are: and since these form an orthonormal basis with respect to a (complex) inner product.
The Pauli matrices are
Using these, one obtains what is sometimes called the Pauli vector:
The Dirac spinors provide a complete and orthogonal set of solutions to the Dirac equation. [2] [3] This is most easily demonstrated by writing the spinors in the rest frame, where this becomes obvious, and then boosting to an arbitrary Lorentz coordinate frame. In the rest frame, where the three-momentum vanishes: one may define four spinors
Introducing the Feynman slash notation
the boosted spinors can be written as and
The conjugate spinors are defined as which may be shown to solve the conjugate Dirac equation
with the derivative understood to be acting towards the left. The conjugate spinors are then and
The normalization chosen here is such that the scalar invariant really is invariant in all Lorentz frames. Specifically, this means
The four rest-frame spinors indicate that there are four distinct, real, linearly independent solutions to the Dirac equation. That they are indeed solutions can be made clear by observing that, when written in momentum space, the Dirac equation has the form and
This follows because which in turn follows from the anti-commutation relations for the gamma matrices: with the metric tensor in flat space (in curved space, the gamma matrices can be viewed as being a kind of vielbein, although this is beyond the scope of the current article). It is perhaps useful to note that the Dirac equation, written in the rest frame, takes the form and so that the rest-frame spinors can correctly be interpreted as solutions to the Dirac equation. There are four equations here, not eight. Although 4-spinors are written as four complex numbers, thus suggesting 8 real variables, only four of them have dynamical independence; the other four have no significance and can always be parameterized away. That is, one could take each of the four vectors and multiply each by a distinct global phase This phase changes nothing; it can be interpreted as a kind of global gauge freedom. This is not to say that "phases don't matter", as of course they do; the Dirac equation must be written in complex form, and the phases couple to electromagnetism. Phases even have a physical significance, as the Aharonov–Bohm effect implies: the Dirac field, coupled to electromagnetism, is a U(1) fiber bundle (the circle bundle), and the Aharonov–Bohm effect demonstrates the holonomy of that bundle. All this has no direct impact on the counting of the number of distinct components of the Dirac field. In any setting, there are only four real, distinct components.
With an appropriate choice of the gamma matrices, it is possible to write the Dirac equation in a purely real form, having only real solutions: this is the Majorana equation. However, it has only two linearly independent solutions. These solutions do not couple to electromagnetism; they describe a massive, electrically neutral spin-1/2 particle. Apparently, coupling to electromagnetism doubles the number of solutions. But of course, this makes sense: coupling to electromagnetism requires taking a real field, and making it complex. With some effort, the Dirac equation can be interpreted as the "complexified" Majorana equation. This is most easily demonstrated in a generic geometrical setting, outside the scope of this article.
It is conventional to define a pair of projection matrices and , that project out the positive and negative energy eigenstates. Given a fixed Lorentz coordinate frame (i.e. a fixed momentum), these are
These are a pair of 4×4 matrices. They sum to the identity matrix: are orthogonal and are idempotent
It is convenient to notice their trace:
Note that the trace, and the orthonormality properties hold independent of the Lorentz frame; these are Lorentz covariants.
Charge conjugation transforms the positive-energy spinor into the negative-energy spinor. Charge conjugation is a mapping (an involution) having the explicit form where denotes the transpose, is a 4×4 matrix, and is an arbitrary phase factor, The article on charge conjugation derives the above form, and demonstrates why the word "charge" is the appropriate word to use: it can be interpreted as the electrical charge. In the Dirac representation for the gamma matrices, the matrix can be written as Thus, a positive-energy solution (dropping the spin superscript to avoid notational overload) is carried to its charge conjugate Note the stray complex conjugates. These can be consolidated with the identity to obtain with the 2-spinor being As this has precisely the form of the negative energy solution, it becomes clear that charge conjugation exchanges the particle and anti-particle solutions. Note that not only is the energy reversed, but the momentum is reversed as well. Spin-up is transmuted to spin-down. It can be shown that the parity is also flipped. Charge conjugation is very much a pairing of Dirac spinor to its "exact opposite".
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.
In physics, charge conjugation is a transformation that switches all particles with their corresponding antiparticles, thus changing the sign of all charges: not only electric charge but also the charges relevant to other forces. The term C-symmetry is an abbreviation of the phrase "charge conjugation symmetry", and is used in discussions of the symmetry of physical laws under charge-conjugation. Other important discrete symmetries are P-symmetry (parity) and T-symmetry.
The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a differential equation version of the relativistic energy–momentum relation .
In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment is −9.2847646917(29)×10−24 J⋅T−1. In units of the Bohr magneton (μB), it is −1.00115965218059(13) μB, a value that was measured with a relative accuracy of 1.3×10−13.
In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.
In physics, the Majorana equation is a relativistic wave equation. It is named after the Italian physicist Ettore Majorana, who proposed it in 1937 as a means of describing fermions that are their own antiparticle. Particles corresponding to this equation are termed Majorana particles, although that term now has a more expansive meaning, referring to any fermionic particle that is its own anti-particle.
In statistics, the inverse Wishart distribution, also called the inverted Wishart distribution, is a probability distribution defined on real-valued positive-definite matrices. In Bayesian statistics it is used as the conjugate prior for the covariance matrix of a multivariate normal distribution.
In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-1/2 particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927. In its linearized form it is known as Lévy-Leblond equation.
In mathematical physics, spacetime algebra (STA) is the application of Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4) to physics. Spacetime algebra provides a "unified, coordinate-free formulation for all of relativistic physics, including the Dirac equation, Maxwell equation and General Relativity" and "reduces the mathematical divide between classical, quantum and relativistic physics."
In the Standard Model, using quantum field theory it is conventional to use the helicity basis to simplify calculations. In this basis, the spin is quantized along the axis in the direction of motion of the particle.
In physics, and specifically in quantum field theory, a bispinor is a mathematical construction that is used to describe some of the fundamental particles of nature, including quarks and electrons. It is a specific embodiment of a spinor, specifically constructed so that it is consistent with the requirements of special relativity. Bispinors transform in a certain "spinorial" fashion under the action of the Lorentz group, which describes the symmetries of Minkowski spacetime. They occur in the relativistic spin-1/2 wave function solutions to the Dirac equation.
In physics, relativistic quantum mechanics (RQM) is any Poincaré covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c, and can accommodate massless particles. The theory has application in high energy physics, particle physics and accelerator physics, as well as atomic physics, chemistry and condensed matter physics. Non-relativistic quantum mechanics refers to the mathematical formulation of quantum mechanics applied in the context of Galilean relativity, more specifically quantizing the equations of classical mechanics by replacing dynamical variables by operators. Relativistic quantum mechanics (RQM) is quantum mechanics applied with special relativity. Although the earlier formulations, like the Schrödinger picture and Heisenberg picture were originally formulated in a non-relativistic background, a few of them also work with special relativity.
In quantum field theory, a non-topological soliton (NTS) is a soliton field configuration possessing, contrary to a topological one, a conserved Noether charge and stable against transformation into usual particles of this field for the following reason. For fixed charge Q, the mass sum of Q free particles exceeds the energy (mass) of the NTS so that the latter is energetically favorable to exist.
In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions.
In quantum field theory, and in the significant subfields of quantum electrodynamics (QED) and quantum chromodynamics (QCD), the two-body Dirac equations (TBDE) of constraint dynamics provide a three-dimensional yet manifestly covariant reformulation of the Bethe–Salpeter equation for two spin-1/2 particles. Such a reformulation is necessary since without it, as shown by Nakanishi, the Bethe–Salpeter equation possesses negative-norm solutions arising from the presence of an essentially relativistic degree of freedom, the relative time. These "ghost" states have spoiled the naive interpretation of the Bethe–Salpeter equation as a quantum mechanical wave equation. The two-body Dirac equations of constraint dynamics rectify this flaw. The forms of these equations can not only be derived from quantum field theory they can also be derived purely in the context of Dirac's constraint dynamics and relativistic mechanics and quantum mechanics. Their structures, unlike the more familiar two-body Dirac equation of Breit, which is a single equation, are that of two simultaneous quantum relativistic wave equations. A single two-body Dirac equation similar to the Breit equation can be derived from the TBDE. Unlike the Breit equation, it is manifestly covariant and free from the types of singularities that prevent a strictly nonperturbative treatment of the Breit equation. In applications of the TBDE to QED, the two particles interact by way of four-vector potentials derived from the field theoretic electromagnetic interactions between the two particles. In applications to QCD, the two particles interact by way of four-vector potentials and Lorentz invariant scalar interactions, derived in part from the field theoretic chromomagnetic interactions between the quarks and in part by phenomenological considerations. As with the Breit equation a sixteen-component spinor Ψ is used.
In electromagnetism, a branch of fundamental physics, the matrix representations of the Maxwell's equations are a formulation of Maxwell's equations using matrices, complex numbers, and vector calculus. These representations are for a homogeneous medium, an approximation in an inhomogeneous medium. A matrix representation for an inhomogeneous medium was presented using a pair of matrix equations. A single equation using 4 × 4 matrices is necessary and sufficient for any homogeneous medium. For an inhomogeneous medium it necessarily requires 8 × 8 matrices.
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.
In mathematical physics, the Gordon decomposition of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.
In quantum mechanics, the Lévy-Leblond equation describes the dynamics of a spin-1/2 particle. It is a linearized version of the Schrödinger equation and of the Pauli equation. It was derived by French physicist Jean-Marc Lévy-Leblond in 1967.