This article may be too technical for most readers to understand.(October 2024) |
In differential geometry, the holonomy of a connection on a smooth manifold is the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. Holonomy is a general geometrical consequence of the curvature of the connection. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features.
Any kind of connection on a manifold gives rise, through its parallel transport maps, to some notion of holonomy. The most common forms of holonomy are for connections possessing some kind of symmetry. Important examples include: holonomy of the Levi-Civita connection in Riemannian geometry (called Riemannian holonomy), holonomy of connections in vector bundles, holonomy of Cartan connections, and holonomy of connections in principal bundles. In each of these cases, the holonomy of the connection can be identified with a Lie group, the holonomy group. The holonomy of a connection is closely related to the curvature of the connection, via the Ambrose–Singer theorem .
The study of Riemannian holonomy has led to a number of important developments. Holonomy was introduced by ÉlieCartan ( 1926 ) in order to study and classify symmetric spaces. It was not until much later that holonomy groups would be used to study Riemannian geometry in a more general setting. In 1952 Georges de Rham proved the de Rham decomposition theorem, a principle for splitting a Riemannian manifold into a Cartesian product of Riemannian manifolds by splitting the tangent bundle into irreducible spaces under the action of the local holonomy groups. Later, in 1953, Marcel Berger classified the possible irreducible holonomies. The decomposition and classification of Riemannian holonomy has applications to physics and to string theory.
Let E be a rank-k vector bundle over a smooth manifold M, and let ∇ be a connection on E. Given a piecewise smooth loop γ : [0,1] → M based at x in M, the connection defines a parallel transport map Pγ : Ex → Ex on the fiber of E at x. This map is both linear and invertible, and so defines an element of the general linear group GL(Ex). The holonomy group of ∇ based at x is defined as
The restricted holonomy group based at x is the subgroup coming from contractible loops γ.
If M is connected, then the holonomy group depends on the basepoint x only up to conjugation in GL(k, R). Explicitly, if γ is a path from x to y in M, then
Choosing different identifications of Ex with Rk also gives conjugate subgroups. Sometimes, particularly in general or informal discussions (such as below), one may drop reference to the basepoint, with the understanding that the definition is good up to conjugation.
Some important properties of the holonomy group include:
The definition for holonomy of connections on principal bundles proceeds in parallel fashion. Let G be a Lie group and P a principal G-bundle over a smooth manifold M which is paracompact. Let ω be a connection on P. Given a piecewise smooth loop γ : [0,1] → M based at x in M and a point p in the fiber over x, the connection defines a unique horizontal lift such that The end point of the horizontal lift, , will not generally be p but rather some other point p·g in the fiber over x. Define an equivalence relation ~ on P by saying that p ~ q if they can be joined by a piecewise smooth horizontal path in P.
The holonomy group of ω based at p is then defined as
The restricted holonomy group based at p is the subgroup coming from horizontal lifts of contractible loops γ.
If M and P are connected then the holonomy group depends on the basepoint p only up to conjugation in G. Explicitly, if q is any other chosen basepoint for the holonomy, then there exists a unique g ∈ G such that q ~ p·g. With this value of g,
In particular,
Moreover, if p ~ q then As above, sometimes one drops reference to the basepoint of the holonomy group, with the understanding that the definition is good up to conjugation.
Some important properties of the holonomy and restricted holonomy groups include:
Let M be a connected paracompact smooth manifold and P a principal G-bundle with connection ω, as above. Let p ∈ P be an arbitrary point of the principal bundle. Let H(p) be the set of points in P which can be joined to p by a horizontal curve. Then it can be shown that H(p), with the evident projection map, is a principal bundle over M with structure group This principal bundle is called the holonomy bundle (through p) of the connection. The connection ω restricts to a connection on H(p), since its parallel transport maps preserve H(p). Thus H(p) is a reduced bundle for the connection. Furthermore, since no subbundle of H(p) is preserved by parallel transport, it is the minimal such reduction. [1]
As with the holonomy groups, the holonomy bundle also transforms equivariantly within the ambient principal bundle P. In detail, if q ∈ P is another chosen basepoint for the holonomy, then there exists a unique g ∈ G such that q ~ pg (since, by assumption, M is path-connected). Hence H(q) = H(p) g. As a consequence, the induced connections on holonomy bundles corresponding to different choices of basepoint are compatible with one another: their parallel transport maps will differ by precisely the same element g.
The holonomy bundle H(p) is a principal bundle for and so also admits an action of the restricted holonomy group (which is a normal subgroup of the full holonomy group). The discrete group is called the monodromy group of the connection; it acts on the quotient bundle There is a surjective homomorphism so that acts on This action of the fundamental group is a monodromy representation of the fundamental group. [2]
If π: P → M is a principal bundle, and ω is a connection in P, then the holonomy of ω can be restricted to the fibre over an open subset of M. Indeed, if U is a connected open subset of M, then ω restricts to give a connection in the bundle π−1U over U. The holonomy (resp. restricted holonomy) of this bundle will be denoted by (resp. ) for each p with π(p) ∈ U.
If U ⊂ V are two open sets containing π(p), then there is an evident inclusion
The local holonomy group at a point p is defined by
for any family of nested connected open sets Uk with .
The local holonomy group has the following properties:
The local holonomy group is not well-behaved as a global object. In particular, its dimension may fail to be constant. However, the following theorem holds:
The Ambrose–Singer theorem (due to WarrenAmbrose and Isadore M. Singer ( 1953 )) relates the holonomy of a connection in a principal bundle with the curvature form of the connection. To make this theorem plausible, consider the familiar case of an affine connection (or a connection in the tangent bundle – the Levi-Civita connection, for example). The curvature arises when one travels around an infinitesimal parallelogram.
In detail, if σ: [0, 1] × [0, 1] → M is a surface in M parametrized by a pair of variables x and y, then a vector V may be transported around the boundary of σ: first along (x, 0), then along (1, y), followed by (x, 1) going in the negative direction, and then (0, y) back to the point of origin. This is a special case of a holonomy loop: the vector V is acted upon by the holonomy group element corresponding to the lift of the boundary of σ. The curvature enters explicitly when the parallelogram is shrunk to zero, by traversing the boundary of smaller parallelograms over [0, x] × [0, y]. This corresponds to taking a derivative of the parallel transport maps at x = y = 0:
where R is the curvature tensor. [3] So, roughly speaking, the curvature gives the infinitesimal holonomy over a closed loop (the infinitesimal parallelogram). More formally, the curvature is the differential of the holonomy action at the identity of the holonomy group. In other words, R(X, Y) is an element of the Lie algebra of
In general, consider the holonomy of a connection in a principal bundle P → M over P with structure group G. Let g denote the Lie algebra of G, the curvature form of the connection is a g-valued 2-form Ω on P. The Ambrose–Singer theorem states: [4]
Alternatively, the theorem can be restated in terms of the holonomy bundle: [5]
The holonomy of a Riemannian manifold (M, g) is the holonomy group of the Levi-Civita connection on the tangent bundle to M. A 'generic' n-dimensional Riemannian manifold has an O(n) holonomy, or SO(n) if it is orientable. Manifolds whose holonomy groups are proper subgroups of O(n) or SO(n) have special properties.
One of the earliest fundamental results on Riemannian holonomy is the theorem of Borel & Lichnerowicz (1952), which asserts that the restricted holonomy group is a closed Lie subgroup of O(n). In particular, it is compact.
Let x ∈ M be an arbitrary point. Then the holonomy group Hol(M) acts on the tangent space TxM. This action may either be irreducible as a group representation, or reducible in the sense that there is a splitting of TxM into orthogonal subspaces TxM = T′xM ⊕ T″xM, each of which is invariant under the action of Hol(M). In the latter case, M is said to be reducible.
Suppose that M is a reducible manifold. Allowing the point x to vary, the bundles T′M and T″M formed by the reduction of the tangent space at each point are smooth distributions which are integrable in the sense of Frobenius. The integral manifolds of these distributions are totally geodesic submanifolds. So M is locally a Cartesian product M′ × M″. The (local) de Rham isomorphism follows by continuing this process until a complete reduction of the tangent space is achieved: [6]
If, moreover, M is assumed to be geodesically complete, then the theorem holds globally, and each Mi is a geodesically complete manifold. [8]
In 1955, M. Berger gave a complete classification of possible holonomy groups for simply connected, Riemannian manifolds which are irreducible (not locally a product space) and nonsymmetric (not locally a Riemannian symmetric space). Berger's list is as follows:
Hol(g) | dim(M) | Type of manifold | Comments |
---|---|---|---|
SO(n) | n | Orientable manifold | — |
U(n) | 2n | Kähler manifold | Kähler |
SU(n) | 2n | Calabi–Yau manifold | Ricci-flat, Kähler |
Sp(n) · Sp(1) | 4n | Quaternion-Kähler manifold | Einstein |
Sp(n) | 4n | Hyperkähler manifold | Ricci-flat, Kähler |
G2 | 7 | G2 manifold | Ricci-flat |
Spin(7) | 8 | Spin(7) manifold | Ricci-flat |
Manifolds with holonomy Sp(n)·Sp(1) were simultaneously studied in 1965 by Edmond Bonan and Vivian Yoh Kraines, who both discovered that such manifolds would necessarily carry a parallel 4-form.
Manifolds with holonomy G2 or Spin(7) were first investigated in abstract by Edmond Bonan in 1966, who classified the parallel differential forms that such a manifold would carry, and showed that such a manifold would necessarily be Ricci-flat. However, no examples such manifolds would actually be constructed for another 30 years.
Berger's original list also included the possibility of Spin(9) as a subgroup of SO(16). Riemannian manifolds with such holonomy were later shown independently by D. Alekseevski and Brown-Gray to be necessarily locally symmetric, i.e., locally isometric to the Cayley plane F4/Spin(9) or locally flat. See below.) It is now known that all of these possibilities occur as holonomy groups of Riemannian manifolds. The last two exceptional cases were the most difficult to find. See G2 manifold and Spin(7) manifold.
Note that Sp(n) ⊂ SU(2n) ⊂ U(2n) ⊂ SO(4n), so every hyperkähler manifold is a Calabi–Yau manifold, every Calabi–Yau manifold is a Kähler manifold, and every Kähler manifold is orientable.
The strange list above was explained by Simons's proof of Berger's theorem. A simple and geometric proof of Berger's theorem was given by Carlos E. Olmos in 2005. One first shows that if a Riemannian manifold is not a locally symmetric space and the reduced holonomy acts irreducibly on the tangent space, then it acts transitively on the unit sphere. The Lie groups acting transitively on spheres are known: they consist of the list above, together with 2 extra cases: the group Spin(9) acting on R16, and the group T · Sp(m) acting on R4m. Finally one checks that the first of these two extra cases only occurs as a holonomy group for locally symmetric spaces (that are locally isomorphic to the Cayley projective plane), and the second does not occur at all as a holonomy group.
Berger's original classification also included non-positive-definite pseudo-Riemannian metric non-locally symmetric holonomy. That list consisted of SO(p,q) of signature (p, q), U(p, q) and SU(p, q) of signature (2p, 2q), Sp(p, q) and Sp(p, q)·Sp(1) of signature (4p, 4q), SO(n, C) of signature (n, n), SO(n, H) of signature (2n, 2n), split G2 of signature (4, 3), G2(C) of signature (7, 7), Spin(4, 3) of signature (4, 4), Spin(7, C) of signature (7,7), Spin(5,4) of signature (8,8) and, lastly, Spin(9, C) of signature (16,16). The split and complexified Spin(9) are necessarily locally symmetric as above and should not have been on the list. The complexified holonomies SO(n, C), G2(C), and Spin(7,C) may be realized from complexifying real analytic Riemannian manifolds. The last case, manifolds with holonomy contained in SO(n, H), were shown to be locally flat by R. McLean. [9]
Riemannian symmetric spaces, which are locally isometric to homogeneous spaces G/H have local holonomy isomorphic to H. These too have been completely classified.
Finally, Berger's paper lists possible holonomy groups of manifolds with only a torsion-free affine connection; this is discussed below.
Manifolds with special holonomy are characterized by the presence of parallel spinors, meaning spinor fields with vanishing covariant derivative. [10] In particular, the following facts hold:
The unitary and special unitary holonomies are often studied in connection with twistor theory, [11] as well as in the study of almost complex structures. [10]
Riemannian manifolds with special holonomy play an important role in string theory compactifications. [12] This is because special holonomy manifolds admit covariantly constant (parallel) spinors and thus preserve some fraction of the original supersymmetry. Most important are compactifications on Calabi–Yau manifolds with SU(2) or SU(3) holonomy. Also important are compactifications on G2 manifolds.
Computing the holonomy of Riemannian manifolds has been suggested as a way to learn the structure of data manifolds in machine learning, in particular in the context of manifold learning. As the holonomy group contains information about the global structure of the data manifold, it can be used to identify how the data manifold might decompose into a product of submanifolds. The holonomy cannot be computed exactly due to finite sampling effects, but it is possible to construct a numerical approximation using ideas from spectral graph theory similar to Vector Diffusion Maps. The resulting algorithm, the Geometric Manifold Component Estimator (GeoManCEr) gives a numerical approximation to the de Rham decomposition that can be applied to real-world data. [13]
Affine holonomy groups are the groups arising as holonomies of torsion-free affine connections; those which are not Riemannian or pseudo-Riemannian holonomy groups are also known as non-metric holonomy groups. The de Rham decomposition theorem does not apply to affine holonomy groups, so a complete classification is out of reach. However, it is still natural to classify irreducible affine holonomies.
On the way to his classification of Riemannian holonomy groups, Berger developed two criteria that must be satisfied by the Lie algebra of the holonomy group of a torsion-free affine connection which is not locally symmetric: one of them, known as Berger's first criterion, is a consequence of the Ambrose–Singer theorem, that the curvature generates the holonomy algebra; the other, known as Berger's second criterion, comes from the requirement that the connection should not be locally symmetric. Berger presented a list of groups acting irreducibly and satisfying these two criteria; this can be interpreted as a list of possibilities for irreducible affine holonomies.
Berger's list was later shown to be incomplete: further examples were found by R. Bryant (1991) and by Q. Chi, S. Merkulov, and L. Schwachhöfer (1996). These are sometimes known as exotic holonomies. The search for examples ultimately led to a complete classification of irreducible affine holonomies by Merkulov and Schwachhöfer (1999), with Bryant (2000) showing that every group on their list occurs as an affine holonomy group.
The Merkulov–Schwachhöfer classification has been clarified considerably by a connection between the groups on the list and certain symmetric spaces, namely the hermitian symmetric spaces and the quaternion-Kähler symmetric spaces. The relationship is particularly clear in the case of complex affine holonomies, as demonstrated by Schwachhöfer (2001).
Let V be a finite-dimensional complex vector space, let H ⊂ Aut(V) be an irreducible semisimple complex connected Lie subgroup and let K ⊂ H be a maximal compact subgroup.
These two families yield all non-symmetric irreducible complex affine holonomy groups apart from the following:
Using the classification of hermitian symmetric spaces, the first family gives the following complex affine holonomy groups:
where ZC is either trivial, or the group C*.
Using the classification of quaternion-Kähler symmetric spaces, the second family gives the following complex symplectic holonomy groups:
(In the second row, ZC must be trivial unless n = 2.)
From these lists, an analogue of Simons's result that Riemannian holonomy groups act transitively on spheres may be observed: the complex holonomy representations are all prehomogeneous vector spaces. A conceptual proof of this fact is not known.
The classification of irreducible real affine holonomies can be obtained from a careful analysis, using the lists above and the fact that real affine holonomies complexify to complex ones.
There is a similar word, "holomorphic", that was introduced by two of Cauchy's students, Briot (1817–1882) and Bouquet (1819–1895), and derives from the Greek ὅλος (holos) meaning "entire", and μορφή (morphē) meaning "form" or "appearance". [14] The etymology of "holonomy" shares the first part with "holomorphic" (holos). About the second part:
"It is remarkably hard to find the etymology of holonomic (or holonomy) on the web. I found the following (thanks to John Conway of Princeton): 'I believe it was first used by Poinsot in his analysis of the motion of a rigid body. In this theory, a system is called "holonomic" if, in a certain sense, one can recover global information from local information, so the meaning "entire-law" is quite appropriate. The rolling of a ball on a table is non-holonomic, because one rolling along different paths to the same point can put it into different orientations.However, it is perhaps a bit too simplistic to say that "holonomy" means "entire-law". The "nom" root has many intertwined meanings in Greek, and perhaps more often refers to "counting". It comes from the same Indo-European root as our word "number." ' "
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.
In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted Sp(2n, F) and Sp(n) for positive integer n and field F (usually C or R). The latter is called the compact symplectic group and is also denoted by . Many authors prefer slightly different notations, usually differing by factors of 2. The notation used here is consistent with the size of the most common matrices which represent the groups. In Cartan's classification of the simple Lie algebras, the Lie algebra of the complex group Sp(2n, C) is denoted Cn, and Sp(n) is the compact real form of Sp(2n, C). Note that when we refer to the (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension n.
In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.
In differential geometry, parallel transport is a way of transporting geometrical data along smooth curves in a manifold. If the manifold is equipped with an affine connection, then this connection allows one to transport vectors of the manifold along curves so that they stay parallel with respect to the connection.
In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics.
In mathematics, and especially differential geometry and gauge theory, a connection on a fiber bundle is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. The most common case is that of a linear connection on a vector bundle, for which the notion of parallel transport must be linear. A linear connection is equivalently specified by a covariant derivative, an operator that differentiates sections of the bundle along tangent directions in the base manifold, in such a way that parallel sections have derivative zero. Linear connections generalize, to arbitrary vector bundles, the Levi-Civita connection on the tangent bundle of a pseudo-Riemannian manifold, which gives a standard way to differentiate vector fields. Nonlinear connections generalize this concept to bundles whose fibers are not necessarily linear.
In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the geometry of the principal bundle is tied to the geometry of the base manifold using a solder form. Cartan connections describe the geometry of manifolds modelled on homogeneous spaces.
In differential geometry, an affine connection is a geometric object on a smooth manifold which connects nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. Connections are among the simplest methods of defining differentiation of the sections of vector bundles.
In mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms.
In differential geometry, a G-structure on an n-manifold M, for a given structure group G, is a principal G-subbundle of the tangent frame bundle FM (or GL(M)) of M.
In mathematics, a volume form or top-dimensional form is a differential form of degree equal to the differentiable manifold dimension. Thus on a manifold of dimension , a volume form is an -form. It is an element of the space of sections of the line bundle , denoted as . A manifold admits a nowhere-vanishing volume form if and only if it is orientable. An orientable manifold has infinitely many volume forms, since multiplying a volume form by a nowhere-vanishing real valued function yields another volume form. On non-orientable manifolds, one may instead define the weaker notion of a density.
In differential geometry, a spin structure on an orientable Riemannian manifold (M, g) allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry.
In mathematics—more specifically, in differential geometry—the musical isomorphism is an isomorphism between the tangent bundle and the cotangent bundle of a Riemannian or pseudo-Riemannian manifold induced by its metric tensor. There are similar isomorphisms on symplectic manifolds. The term musical refers to the use of the musical notation symbols (flat) and (sharp).
In differential geometry, the torsion tensor is a tensor that is associated to any affine connection. The torsion tensor is a bilinear map of two input vectors , that produces an output vector representing the displacement within a tangent space when the tangent space is developed along an infinitesimal parallelogram whose sides are . It is skew symmetric in its inputs, because developing over the parallelogram in the opposite sense produces the opposite displacement, similarly to how a screw moves in opposite ways when it is twisted in two directions.
This is a glossary of algebraic geometry.
In physics and mathematics, and especially differential geometry and gauge theory, the Yang–Mills equations are a system of partial differential equations for a connection on a vector bundle or principal bundle. They arise in physics as the Euler–Lagrange equations of the Yang–Mills action functional. They have also found significant use in mathematics.
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.
In algebraic geometry and differential geometry, the nonabelian Hodge correspondence or Corlette–Simpson correspondence is a correspondence between Higgs bundles and representations of the fundamental group of a smooth, projective complex algebraic variety, or a compact Kähler manifold.
In differential geometry, a quaternionic manifold is a quaternionic analog of a complex manifold. The definition is more complicated and technical than the one for complex manifolds due in part to the noncommutativity of the quaternions and in part to the lack of a suitable calculus of holomorphic functions for quaternions. The most succinct definition uses the language of G-structures on a manifold. Specifically, a quaternionic n-manifold can be defined as a smooth manifold of real dimension 4n equipped with a torsion-free -structure. More naïve, but straightforward, definitions lead to a dearth of examples, and exclude spaces like quaternionic projective space which should clearly be considered as quaternionic manifolds.
In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.