In differential geometry and mathematical physics, an Einstein manifold is a Riemannian or pseudo-Riemannian differentiable manifold whose Ricci tensor is proportional to the metric. They are named after Albert Einstein because this condition is equivalent to saying that the metric is a solution of the vacuum Einstein field equations (with cosmological constant), although both the dimension and the signature of the metric can be arbitrary, thus not being restricted to Lorentzian manifolds (including the four-dimensional Lorentzian manifolds usually studied in general relativity). Einstein manifolds in four Euclidean dimensions are studied as gravitational instantons.
If M is the underlying n-dimensional manifold, and g is its metric tensor, the Einstein condition means that
for some constant k, where Ric denotes the Ricci tensor of g. Einstein manifolds with k = 0 are called Ricci-flat manifolds.
In local coordinates the condition that (M, g) be an Einstein manifold is simply
Taking the trace of both sides reveals that the constant of proportionality k for Einstein manifolds is related to the scalar curvature R by
where n is the dimension of M.
In general relativity, Einstein's equation with a cosmological constant Λ is
where κ is the Einstein gravitational constant. [1] The stress–energy tensor Tab gives the matter and energy content of the underlying spacetime. In vacuum (a region of spacetime devoid of matter) Tab = 0, and Einstein's equation can be rewritten in the form (assuming that n> 2):
Therefore, vacuum solutions of Einstein's equation are (Lorentzian) Einstein manifolds with k proportional to the cosmological constant.
Simple examples of Einstein manifolds include:
One necessary condition for closed, oriented, 4-manifolds to be Einstein is satisfying the Hitchin–Thorpe inequality. However, this necessary condition is very far from sufficient, as further obstructions have been discovered by LeBrun, Sambusetti, and others.
Four dimensional Riemannian Einstein manifolds are also important in mathematical physics as gravitational instantons in quantum theories of gravity. The term "gravitational instanton" is sometimes restricted to Einstein 4-manifolds whose Weyl tensor is anti-self-dual, and it is very often assumed that the metric is asymptotic to the standard metric on a finite quotient Euclidean 4-space (and are therefore complete but non-compact). In differential geometry, simply connected self-dual Einstein 4-manifolds are coincide with the 4-dimensional, reverse-oriented hyperkähler manifolds in the Ricci-flat case, but are sometimes called quaternion Kähler manifolds otherwise.
Higher-dimensional Lorentzian Einstein manifolds are used in modern theories of gravity, such as string theory, M-theory and supergravity. Hyperkähler and quaternion Kähler manifolds (which are special kinds of Einstein manifolds) also have applications in physics as target spaces for nonlinear σ-models with supersymmetry.
Compact Einstein manifolds have been much studied in differential geometry, and many examples are known, although constructing them is often challenging. Compact Ricci-flat manifolds are particularly difficult to find: in the monograph on the subject by the pseudonymous author Arthur Besse, readers are offered a meal in a starred restaurant in exchange for a new example. [2]
In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the -sphere, hyperbolic space, and smooth surfaces in three-dimensional space, such as ellipsoids and paraboloids, are all examples of Riemannian manifolds. Riemannian manifolds are named after German mathematician Bernhard Riemann, who first conceptualized them.
In algebraic and differential geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a particular type of manifold which has certain properties, such as Ricci flatness, yielding applications in theoretical physics. Particularly in superstring theory, the extra dimensions of spacetime are sometimes conjectured to take the form of a 6-dimensional Calabi–Yau manifold, which led to the idea of mirror symmetry. Their name was coined by Candelas et al. (1985), after Eugenio Calabi, who first conjectured that such surfaces might exist, and Shing-Tung Yau, who proved the Calabi conjecture.
In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.
In the mathematical field of Riemannian geometry, the scalar curvature is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls. In the context of the differential geometry of surfaces, the scalar curvature is twice the Gaussian curvature, and completely characterizes the curvature of a surface. In higher dimensions, however, the scalar curvature only represents one particular part of the Riemann curvature tensor.
In the mathematical fields of differential geometry and geometric analysis, the Ricci flow, sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion of heat and the heat equation, due to formal similarities in the mathematical structure of the equation. However, it is nonlinear and exhibits many phenomena not present in the study of the heat equation.
Shing-Tung Yau is a Chinese-American mathematician. He is the director of the Yau Mathematical Sciences Center at Tsinghua University and professor emeritus at Harvard University. Until 2022, Yau was the William Caspar Graustein Professor of Mathematics at Harvard, at which point he moved to Tsinghua.
In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics.
In the mathematical field of differential geometry, Ricci-flatness is a condition on the curvature of a Riemannian manifold. Ricci-flat manifolds are a special kind of Einstein manifold. In theoretical physics, Ricci-flat Lorentzian manifolds are of fundamental interest, as they are the solutions of Einstein's field equations in a vacuum with vanishing cosmological constant.
In differential geometry, a hyperkähler manifold is a Riemannian manifold endowed with three integrable almost complex structures that are Kähler with respect to the Riemannian metric and satisfy the quaternionic relations . In particular, it is a hypercomplex manifold. All hyperkähler manifolds are Ricci-flat and are thus Calabi–Yau manifolds.
In differential geometry, the Weyl curvature tensor, named after Hermann Weyl, is a measure of the curvature of spacetime or, more generally, a pseudo-Riemannian manifold. Like the Riemann curvature tensor, the Weyl tensor expresses the tidal force that a body feels when moving along a geodesic. The Weyl tensor differs from the Riemann curvature tensor in that it does not convey information on how the volume of the body changes, but rather only how the shape of the body is distorted by the tidal force. The Ricci curvature, or trace component of the Riemann tensor contains precisely the information about how volumes change in the presence of tidal forces, so the Weyl tensor is the traceless component of the Riemann tensor. This tensor has the same symmetries as the Riemann tensor, but satisfies the extra condition that it is trace-free: metric contraction on any pair of indices yields zero. It is obtained from the Riemann tensor by subtracting a tensor that is a linear expression in the Ricci tensor.
In the mathematical fields of Riemannian and pseudo-Riemannian geometry, the Ricci decomposition is a way of breaking up the Riemann curvature tensor of a Riemannian or pseudo-Riemannian manifold into pieces with special algebraic properties. This decomposition is of fundamental importance in Riemannian and pseudo-Riemannian geometry.
In mathematical physics and differential geometry, a gravitational instanton is a four-dimensional complete Riemannian manifold satisfying the vacuum Einstein equations. They are so named because they are analogues in quantum theories of gravity of instantons in Yang–Mills theory. In accordance with this analogy with self-dual Yang–Mills instantons, gravitational instantons are usually assumed to look like four dimensional Euclidean space at large distances, and to have a self-dual Riemann tensor. Mathematically, this means that they are asymptotically locally Euclidean hyperkähler 4-manifolds, and in this sense, they are special examples of Einstein manifolds. From a physical point of view, a gravitational instanton is a non-singular solution of the vacuum Einstein equations with positive-definite, as opposed to Lorentzian, metric.
In differential geometry, a quaternion-Kähler manifold (or quaternionic Kähler manifold) is a Riemannian 4n-manifold whose Riemannian holonomy group is a subgroup of Sp(n)·Sp(1) for some . Here Sp(n) is the sub-group of consisting of those orthogonal transformations that arise by left-multiplication by some quaternionic matrix, while the group of unit-length quaternions instead acts on quaternionic -space by right scalar multiplication. The Lie group generated by combining these actions is then abstractly isomorphic to .
In Riemannian geometry, a branch of mathematics, harmonic coordinates are a certain kind of coordinate chart on a smooth manifold, determined by a Riemannian metric on the manifold. They are useful in many problems of geometric analysis due to their regularity properties.
In differential geometry, a Kähler–Einstein metric on a complex manifold is a Riemannian metric that is both a Kähler metric and an Einstein metric. A manifold is said to be Kähler–Einstein if it admits a Kähler–Einstein metric. The most important special case of these are the Calabi–Yau manifolds, which are Kähler and Ricci-flat.
In Riemannian geometry, Schur's lemma is a result that says, heuristically, whenever certain curvatures are pointwise constant then they are forced to be globally constant. The proof is essentially a one-step calculation, which has only one input: the second Bianchi identity.
In mathematics and theoretical physics, the Eguchi–Hanson space is a non-compact, self-dual, asymptotically locally Euclidean (ALE) metric on the cotangent bundle of the 2-sphere T*S2. The holonomy group of this 4-real-dimensional manifold is SU(2). The metric is generally attributed to the physicists Tohru Eguchi and Andrew J. Hanson; it was discovered independently by the mathematician Eugenio Calabi around the same time in 1979.
In the mathematical field of differential geometry, a Codazzi tensor is a symmetric 2-tensor whose covariant derivative is also symmetric. Such tensors arise naturally in the study of Riemannian manifolds with harmonic curvature or harmonic Weyl tensor. In fact, existence of Codazzi tensors impose strict conditions on the curvature tensor of the manifold. Also, the second fundamental form of an immersed hypersurface in a space form is a Codazzi tensor.
In mathematics, and in particular gauge theory and complex geometry, a Hermitian Yang–Mills connection is a Chern connection associated to an inner product on a holomorphic vector bundle over a Kähler manifold that satisfies an analogue of Einstein's equations: namely, the contraction of the curvature 2-form of the connection with the Kähler form is required to be a constant times the identity transformation. Hermitian Yang–Mills connections are special examples of Yang–Mills connections, and are often called instantons.
In differential geometry, a constant scalar curvature Kähler metric is a Kähler metric on a complex manifold whose scalar curvature is constant. A special case is a Kähler–Einstein metric, and a more general case is an extremal Kähler metric.