Einstein field equations

Last updated

In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it. [1]

Contents

The equations were published by Albert Einstein in 1915 in the form of a tensor equation [2] which related the local spacetime curvature (expressed by the Einstein tensor) with the local energy, momentum and stress within that spacetime (expressed by the stress–energy tensor). [3]

Analogously to the way that electromagnetic fields are related to the distribution of charges and currents via Maxwell's equations, the EFE relate the spacetime geometry to the distribution of mass–energy, momentum and stress, that is, they determine the metric tensor of spacetime for a given arrangement of stress–energy–momentum in the spacetime. The relationship between the metric tensor and the Einstein tensor allows the EFE to be written as a set of nonlinear partial differential equations when used in this way. The solutions of the EFE are the components of the metric tensor. The inertial trajectories of particles and radiation (geodesics) in the resulting geometry are then calculated using the geodesic equation.

As well as implying local energy–momentum conservation, the EFE reduce to Newton's law of gravitation in the limit of a weak gravitational field and velocities that are much less than the speed of light. [4]

Exact solutions for the EFE can only be found under simplifying assumptions such as symmetry. Special classes of exact solutions are most often studied since they model many gravitational phenomena, such as rotating black holes and the expanding universe. Further simplification is achieved in approximating the spacetime as having only small deviations from flat spacetime, leading to the linearized EFE. These equations are used to study phenomena such as gravitational waves.

Mathematical form

The Einstein field equations (EFE) may be written in the form: [5] [1]

EFE on a wall in Leiden, Netherlands EinsteinLeiden4.jpg
EFE on a wall in Leiden, Netherlands

where is the Einstein tensor, is the metric tensor, is the stress–energy tensor, is the cosmological constant and is the Einstein gravitational constant.

The Einstein tensor is defined as

where Rμν is the Ricci curvature tensor, and R is the scalar curvature. This is a symmetric second-degree tensor that depends on only the metric tensor and its first and second derivatives.

The Einstein gravitational constant is defined as [6] [7]

or

where G is the Newtonian constant of gravitation and c is the speed of light in vacuum.

The EFE can thus also be written as

In standard units, each term on the left has units of 1/length2.

The expression on the left represents the curvature of spacetime as determined by the metric; the expression on the right represents the stress–energy–momentum content of spacetime. The EFE can then be interpreted as a set of equations dictating how stress–energy–momentum determines the curvature of spacetime.

These equations, together with the geodesic equation, [8] which dictates how freely falling matter moves through spacetime, form the core of the mathematical formulation of general relativity.

The EFE is a tensor equation relating a set of symmetric 4 × 4 tensors. Each tensor has 10 independent components. The four Bianchi identities reduce the number of independent equations from 10 to 6, leaving the metric with four gauge-fixing degrees of freedom, which correspond to the freedom to choose a coordinate system.

Although the Einstein field equations were initially formulated in the context of a four-dimensional theory, some theorists have explored their consequences in n dimensions. [9] The equations in contexts outside of general relativity are still referred to as the Einstein field equations. The vacuum field equations (obtained when Tμν is everywhere zero) define Einstein manifolds.

The equations are more complex than they appear. Given a specified distribution of matter and energy in the form of a stress–energy tensor, the EFE are understood to be equations for the metric tensor , since both the Ricci tensor and scalar curvature depend on the metric in a complicated nonlinear manner. When fully written out, the EFE are a system of ten coupled, nonlinear, hyperbolic-elliptic partial differential equations. [10]

Sign convention

The above form of the EFE is the standard established by Misner, Thorne, and Wheeler (MTW). [11] The authors analyzed conventions that exist and classified these according to three signs ([S1] [S2] [S3]):

The third sign above is related to the choice of convention for the Ricci tensor:

With these definitions Misner, Thorne, and Wheeler classify themselves as (+ + +), whereas Weinberg (1972) [12] is (+ − −), Peebles (1980) [13] and Efstathiou et al. (1990) [14] are (− + +), Rindler (1977),[ citation needed ] Atwater (1974),[ citation needed ] Collins Martin & Squires (1989) [15] and Peacock (1999) [16] are (− + −).

Authors including Einstein have used a different sign in their definition for the Ricci tensor which results in the sign of the constant on the right side being negative:

The sign of the cosmological term would change in both these versions if the (+ − − −) metric sign convention is used rather than the MTW (− + + +) metric sign convention adopted here.

Equivalent formulations

Taking the trace with respect to the metric of both sides of the EFE one gets

where D is the spacetime dimension. Solving for R and substituting this in the original EFE, one gets the following equivalent "trace-reversed" form:

In D = 4 dimensions this reduces to

Reversing the trace again would restore the original EFE. The trace-reversed form may be more convenient in some cases (for example, when one is interested in weak-field limit and can replace in the expression on the right with the Minkowski metric without significant loss of accuracy).

The cosmological constant

In the Einstein field equations

the term containing the cosmological constant Λ was absent from the version in which he originally published them. Einstein then included the term with the cosmological constant to allow for a universe that is not expanding or contracting. This effort was unsuccessful because:

Einstein then abandoned Λ, remarking to George Gamow "that the introduction of the cosmological term was the biggest blunder of his life". [17]

The inclusion of this term does not create inconsistencies. For many years the cosmological constant was almost universally assumed to be zero. More recent astronomical observations have shown an accelerating expansion of the universe, and to explain this a positive value of Λ is needed. [18] [19] The cosmological constant is negligible at the scale of a galaxy or smaller.

Einstein thought of the cosmological constant as an independent parameter, but its term in the field equation can also be moved algebraically to the other side and incorporated as part of the stress–energy tensor:

This tensor describes a vacuum state with an energy density ρvac and isotropic pressure pvac that are fixed constants and given by

where it is assumed that Λ has SI unit m−2 and κ is defined as above.

The existence of a cosmological constant is thus equivalent to the existence of a vacuum energy and a pressure of opposite sign. This has led to the terms "cosmological constant" and "vacuum energy" being used interchangeably in general relativity.

Features

Conservation of energy and momentum

General relativity is consistent with the local conservation of energy and momentum expressed as

Derivation of local energy–momentum conservation

Contracting the differential Bianchi identity

with gαβ gives, using the fact that the metric tensor is covariantly constant, i.e. gαβ = 0,

The antisymmetry of the Riemann tensor allows the second term in the above expression to be rewritten:

which is equivalent to

using the definition of the Ricci tensor.

Next, contract again with the metric

to get

The definitions of the Ricci curvature tensor and the scalar curvature then show that

which can be rewritten as

A final contraction with gεδ gives

which by the symmetry of the bracketed term and the definition of the Einstein tensor, gives, after relabelling the indices,

Using the EFE, this immediately gives,

which expresses the local conservation of stress–energy. This conservation law is a physical requirement. With his field equations Einstein ensured that general relativity is consistent with this conservation condition.

Nonlinearity

The nonlinearity of the EFE distinguishes general relativity from many other fundamental physical theories. For example, Maxwell's equations of electromagnetism are linear in the electric and magnetic fields, and charge and current distributions (i.e. the sum of two solutions is also a solution); another example is Schrödinger's equation of quantum mechanics, which is linear in the wavefunction.

The correspondence principle

The EFE reduce to Newton's law of gravity by using both the weak-field approximation and the slow-motion approximation. In fact, the constant G appearing in the EFE is determined by making these two approximations.

Derivation of Newton's law of gravity

Newtonian gravitation can be written as the theory of a scalar field, Φ, which is the gravitational potential in joules per kilogram of the gravitational field g = −∇Φ, see Gauss's law for gravity

where ρ is the mass density. The orbit of a free-falling particle satisfies

In tensor notation, these become

In general relativity, these equations are replaced by the Einstein field equations in the trace-reversed form

for some constant, K, and the geodesic equation

To see how the latter reduces to the former, we assume that the test particle's velocity is approximately zero

and thus

and that the metric and its derivatives are approximately static and that the squares of deviations from the Minkowski metric are negligible. Applying these simplifying assumptions to the spatial components of the geodesic equation gives

where two factors of dt/ have been divided out. This will reduce to its Newtonian counterpart, provided

Our assumptions force α = i and the time (0) derivatives to be zero. So this simplifies to

which is satisfied by letting

Turning to the Einstein equations, we only need the time-time component

the low speed and static field assumptions imply that

So

and thus

From the definition of the Ricci tensor

Our simplifying assumptions make the squares of Γ disappear together with the time derivatives

Combining the above equations together

which reduces to the Newtonian field equation provided

which will occur if

Vacuum field equations

A Swiss commemorative coin from 1979, showing the vacuum field equations with zero cosmological constant (top). Swiss-Commemorative-Coin-1979b-CHF-5-obverse.png
A Swiss commemorative coin from 1979, showing the vacuum field equations with zero cosmological constant (top).

If the energy–momentum tensor Tμν is zero in the region under consideration, then the field equations are also referred to as the vacuum field equations. By setting Tμν = 0 in the trace-reversed field equations, the vacuum field equations, also known as 'Einstein vacuum equations' (EVE), can be written as

In the case of nonzero cosmological constant, the equations are

The solutions to the vacuum field equations are called vacuum solutions. Flat Minkowski space is the simplest example of a vacuum solution. Nontrivial examples include the Schwarzschild solution and the Kerr solution.

Manifolds with a vanishing Ricci tensor, Rμν = 0, are referred to as Ricci-flat manifolds and manifolds with a Ricci tensor proportional to the metric as Einstein manifolds.

Einstein–Maxwell equations

If the energy–momentum tensor Tμν is that of an electromagnetic field in free space, i.e. if the electromagnetic stress–energy tensor

is used, then the Einstein field equations are called the Einstein–Maxwell equations (with cosmological constant Λ, taken to be zero in conventional relativity theory):

Additionally, the covariant Maxwell equations are also applicable in free space:

where the semicolon represents a covariant derivative, and the brackets denote anti-symmetrization. The first equation asserts that the 4-divergence of the 2-form F is zero, and the second that its exterior derivative is zero. From the latter, it follows by the Poincaré lemma that in a coordinate chart it is possible to introduce an electromagnetic field potential Aα such that

in which the comma denotes a partial derivative. This is often taken as equivalent to the covariant Maxwell equation from which it is derived. [20] However, there are global solutions of the equation that may lack a globally defined potential. [21]

Solutions

The solutions of the Einstein field equations are metrics of spacetime. These metrics describe the structure of the spacetime including the inertial motion of objects in the spacetime. As the field equations are non-linear, they cannot always be completely solved (i.e. without making approximations). For example, there is no known complete solution for a spacetime with two massive bodies in it (which is a theoretical model of a binary star system, for example). However, approximations are usually made in these cases. These are commonly referred to as post-Newtonian approximations. Even so, there are several cases where the field equations have been solved completely, and those are called exact solutions. [9]

The study of exact solutions of Einstein's field equations is one of the activities of cosmology. It leads to the prediction of black holes and to different models of evolution of the universe.

One can also discover new solutions of the Einstein field equations via the method of orthonormal frames as pioneered by Ellis and MacCallum. [22] In this approach, the Einstein field equations are reduced to a set of coupled, nonlinear, ordinary differential equations. As discussed by Hsu and Wainwright, [23] self-similar solutions to the Einstein field equations are fixed points of the resulting dynamical system. New solutions have been discovered using these methods by LeBlanc [24] and Kohli and Haslam. [25]

The linearized EFE

The nonlinearity of the EFE makes finding exact solutions difficult. One way of solving the field equations is to make an approximation, namely, that far from the source(s) of gravitating matter, the gravitational field is very weak and the spacetime approximates that of Minkowski space. The metric is then written as the sum of the Minkowski metric and a term representing the deviation of the true metric from the Minkowski metric, ignoring higher-power terms. This linearization procedure can be used to investigate the phenomena of gravitational radiation.

Polynomial form

Despite the EFE as written containing the inverse of the metric tensor, they can be arranged in a form that contains the metric tensor in polynomial form and without its inverse. First, the determinant of the metric in 4 dimensions can be written

using the Levi-Civita symbol; and the inverse of the metric in 4 dimensions can be written as:

Substituting this expression of the inverse of the metric into the equations then multiplying both sides by a suitable power of det(g) to eliminate it from the denominator results in polynomial equations in the metric tensor and its first and second derivatives. The action from which the equations are derived can also be written in polynomial form by suitable redefinitions of the fields. [26]

See also

Notes

  1. 1 2 Einstein, Albert (1916). "The Foundation of the General Theory of Relativity". Annalen der Physik . 354 (7): 769. Bibcode:1916AnP...354..769E. doi:10.1002/andp.19163540702. Archived from the original (PDF) on 2012-02-06.
  2. Einstein, Albert (November 25, 1915). "Die Feldgleichungen der Gravitation". Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin: 844–847. Retrieved 2017-08-21.
  3. Misner, Thorne & Wheeler (1973), p. 916 [ch. 34].
  4. Carroll, Sean (2004). Spacetime and Geometry – An Introduction to General Relativity. Addison Wesley. pp. 151–159. ISBN   0-8053-8732-3.
  5. Grøn, Øyvind; Hervik, Sigbjorn (2007). Einstein's General Theory of Relativity: With Modern Applications in Cosmology (illustrated ed.). Springer Science & Business Media. p. 180. ISBN   978-0-387-69200-5.
  6. With the choice of the Einstein gravitational constant as given here, κ = 8πG/c4, the stress–energy tensor on the right side of the equation must be written with each component in units of energy density (i.e., energy per volume, equivalently pressure). In Einstein's original publication, the choice is κ = 8πG/c2, in which case the stress–energy tensor components have units of mass density.
  7. Adler, Ronald; Bazin, Maurice; Schiffer, Menahem (1975). Introduction to general relativity (2d ed.). New York: McGraw-Hill. ISBN   0-07-000423-4. OCLC   1046135.
  8. Weinberg, Steven (1993). Dreams of a Final Theory: the search for the fundamental laws of nature. Vintage Press. pp. 107, 233. ISBN   0-09-922391-0.
  9. 1 2 Stephani, Hans; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E. (2003). Exact Solutions of Einstein's Field Equations. Cambridge University Press. ISBN   0-521-46136-7.
  10. Rendall, Alan D. (2005). "Theorems on Existence and Global Dynamics for the Einstein Equations". Living Rev. Relativ. 8 (1). Article number: 6. arXiv: gr-qc/0505133 . Bibcode:2005LRR.....8....6R. doi: 10.12942/lrr-2005-6 . PMC   5256071 . PMID   28179868.
  11. Misner, Thorne & Wheeler (1973), p. 501ff.
  12. Weinberg (1972).
  13. Peebles, Phillip James Edwin (1980). The Large-scale Structure of the Universe. Princeton University Press. ISBN   0-691-08239-1.
  14. Efstathiou, G.; Sutherland, W. J.; Maddox, S. J. (1990). "The cosmological constant and cold dark matter". Nature . 348 (6303): 705. Bibcode:1990Natur.348..705E. doi:10.1038/348705a0. S2CID   12988317.
  15. Collins, P. D. B.; Martin, A. D.; Squires, E. J. (1989). Particle Physics and Cosmology. New York: Wiley. ISBN   0-471-60088-1.
  16. Peacock (1999).
  17. Gamow, George (April 28, 1970). My World Line : An Informal Autobiography. Viking Adult. ISBN   0-670-50376-2 . Retrieved 2007-03-14.
  18. Wahl, Nicolle (2005-11-22). "Was Einstein's 'biggest blunder' a stellar success?". News@UofT. University of Toronto. Archived from the original on 2007-03-07.
  19. Turner, Michael S. (May 2001). "Making Sense of the New Cosmology". Int. J. Mod. Phys. A. 17 (S1): 180–196. arXiv: astro-ph/0202008 . Bibcode:2002IJMPA..17S.180T. doi:10.1142/S0217751X02013113. S2CID   16669258.
  20. Brown, Harvey (2005). Physical Relativity. Oxford University Press. p. 164. ISBN   978-0-19-927583-0.
  21. Trautman, Andrzej (1977). "Solutions of the Maxwell and Yang–Mills equations associated with Hopf fibrings". International Journal of Theoretical Physics . 16 (9): 561–565. Bibcode:1977IJTP...16..561T. doi:10.1007/BF01811088. S2CID   123364248..
  22. Ellis, G. F. R.; MacCallum, M. (1969). "A class of homogeneous cosmological models". Comm. Math. Phys. 12 (2): 108–141. Bibcode:1969CMaPh..12..108E. doi:10.1007/BF01645908. S2CID   122577276.
  23. Hsu, L.; Wainwright, J (1986). "Self-similar spatially homogeneous cosmologies: orthogonal perfect fluid and vacuum solutions". Class. Quantum Grav. 3 (6): 1105–1124. Bibcode:1986CQGra...3.1105H. doi:10.1088/0264-9381/3/6/011. S2CID   250907312.
  24. LeBlanc, V. G. (1997). "Asymptotic states of magnetic Bianchi I cosmologies". Class. Quantum Grav. 14 (8): 2281. Bibcode:1997CQGra..14.2281L. doi:10.1088/0264-9381/14/8/025. S2CID   250876974.
  25. Kohli, Ikjyot Singh; Haslam, Michael C. (2013). "Dynamical systems approach to a Bianchi type I viscous magnetohydrodynamic model". Phys. Rev. D. 88 (6): 063518. arXiv: 1304.8042 . Bibcode:2013PhRvD..88f3518K. doi:10.1103/physrevd.88.063518. S2CID   119178273.
  26. Katanaev, M. O. (2006). "Polynomial form of the Hilbert–Einstein action". Gen. Rel. Grav. 38 (8): 1233–1240. arXiv: gr-qc/0507026 . Bibcode:2006GReGr..38.1233K. doi:10.1007/s10714-006-0310-5. S2CID   6263993.

Related Research Articles

<span class="mw-page-title-main">Kaluza–Klein theory</span> Unified field theory

In physics, Kaluza–Klein theory is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to string theory. In their setup, the vacuum has the usual 3 dimensions of space and one dimension of time but with another microscopic extra spatial dimension in the shape of a tiny circle. Gunnar Nordström had an earlier, similar idea. But in that case, a fifth component was added to the electromagnetic vector potential, representing the Newtonian gravitational potential, and writing the Maxwell equations in five dimensions.

<span class="mw-page-title-main">Stress–energy tensor</span> Tensor describing energy momentum density in spacetime

The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

The Einstein–Hilbert action in general relativity is the action that yields the Einstein field equations through the stationary-action principle. With the (− + + +) metric signature, the gravitational part of the action is given as

In differential geometry, the Einstein tensor is used to express the curvature of a pseudo-Riemannian manifold. In general relativity, it occurs in the Einstein field equations for gravitation that describe spacetime curvature in a manner that is consistent with conservation of energy and momentum.

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

Solutions of the Einstein field equations are metrics of spacetimes that result from solving the Einstein field equations (EFE) of general relativity. Solving the field equations gives a Lorentz manifold. Solutions are broadly classed as exact or non-exact.

In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic.

In general relativity, the metric tensor is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

In the theory of general relativity, a stress–energy–momentum pseudotensor, such as the Landau–Lifshitz pseudotensor, is an extension of the non-gravitational stress–energy tensor that incorporates the energy–momentum of gravity. It allows the energy–momentum of a system of gravitating matter to be defined. In particular it allows the total of matter plus the gravitating energy–momentum to form a conserved current within the framework of general relativity, so that the total energy–momentum crossing the hypersurface of any compact space–time hypervolume vanishes.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

In the Newman–Penrose (NP) formalism of general relativity, Weyl scalars refer to a set of five complex scalars which encode the ten independent components of the Weyl tensor of a four-dimensional spacetime.

Alternatives to general relativity are physical theories that attempt to describe the phenomenon of gravitation in competition with Einstein's theory of general relativity. There have been many different attempts at constructing an ideal theory of gravity.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

f(R) is a type of modified gravity theory which generalizes Einstein's general relativity. f(R) gravity is actually a family of theories, each one defined by a different function, f, of the Ricci scalar, R. The simplest case is just the function being equal to the scalar; this is general relativity. As a consequence of introducing an arbitrary function, there may be freedom to explain the accelerated expansion and structure formation of the Universe without adding unknown forms of dark energy or dark matter. Some functional forms may be inspired by corrections arising from a quantum theory of gravity. f(R) gravity was first proposed in 1970 by Hans Adolph Buchdahl. It has become an active field of research following work by Starobinsky on cosmic inflation. A wide range of phenomena can be produced from this theory by adopting different functions; however, many functional forms can now be ruled out on observational grounds, or because of pathological theoretical problems.

In the Newman–Penrose (NP) formalism of general relativity, independent components of the Ricci tensors of a four-dimensional spacetime are encoded into seven Ricci scalars which consist of three real scalars , three complex scalars and the NP curvature scalar . Physically, Ricci-NP scalars are related with the energy–momentum distribution of the spacetime due to Einstein's field equation.

Bimetric gravity or bigravity refers to two different classes of theories. The first class of theories relies on modified mathematical theories of gravity in which two metric tensors are used instead of one. The second metric may be introduced at high energies, with the implication that the speed of light could be energy-dependent, enabling models with a variable speed of light.

<span class="mw-page-title-main">Dual graviton</span> Hypothetical particle found in supergravity

In theoretical physics, the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric-magnetic duality, as an S-duality, predicted by some formulations of supergravity in eleven dimensions.

References

See General relativity resources.

External images