Introduction to the mathematics of general relativity

Last updated

The mathematics of general relativity is complex. In Newton's theories of motion, an object's length and the rate at which time passes remain constant while the object accelerates, meaning that many problems in Newtonian mechanics may be solved by algebra alone. In relativity, however, an object's length and the rate at which time passes both change appreciably as the object's speed approaches the speed of light, meaning that more variables and more complicated mathematics are required to calculate the object's motion. As a result, relativity requires the use of concepts such as vectors, tensors, pseudotensors and curvilinear coordinates.

Contents

For an introduction based on the example of particles following circular orbits about a large mass, nonrelativistic and relativistic treatments are given in, respectively, Newtonian motivations for general relativity and Theoretical motivation for general relativity.

Vectors and tensors

Vectors

Illustration of a typical vector Vector by Zureks.svg
Illustration of a typical vector

In mathematics, physics, and engineering, a Euclidean vector (sometimes called a geometric [1] or spatial vector, [2] or – as here – simply a vector) is a geometric object that has both a magnitude (or length) and direction. A vector is what is needed to "carry" the point A to the point B; the Latin word vector means "one who carries". [3] The magnitude of the vector is the distance between the two points and the direction refers to the direction of displacement from A to B. Many algebraic operations on real numbers such as addition, subtraction, multiplication, and negation have close analogues for vectors, operations which obey the familiar algebraic laws of commutativity, associativity, and distributivity.

Tensors

Stress is a second-order tensor that represents the response of a material to force applied at an angle. The two directions of the tensor represent the "normal" (at right angles to the surface) force, and "shear" (parallel to the surface) force. Components stress tensor cartesian.svg
Stress is a second-order tensor that represents the response of a material to force applied at an angle. The two directions of the tensor represent the "normal" (at right angles to the surface) force, and "shear" (parallel to the surface) force.

A tensor extends the concept of a vector to additional directions. A scalar, that is, a simple number without a direction, would be shown on a graph as a point, a zero-dimensional object. A vector, which has a magnitude and direction, would appear on a graph as a line, which is a one-dimensional object. A vector is a first-order tensor, since it holds one direction. A second-order tensor has two magnitudes and two directions, and would appear on a graph as two lines similar to the hands of a clock. The "order" of a tensor is the number of directions contained within, which is separate from the dimensions of the individual directions. A second-order tensor in two dimensions might be represented mathematically by a 2-by-2 matrix, and in three dimensions by a 3-by-3 matrix, but in both cases the matrix is "square" for a second-order tensor. A third-order tensor has three magnitudes and directions, and would be represented by a cube of numbers, 3-by-3-by-3 for directions in three dimensions, and so on.

Applications

Vectors are fundamental in the physical sciences. They can be used to represent any quantity that has both a magnitude and direction, such as velocity, the magnitude of which is speed. For example, the velocity 5 meters per second upward could be represented by the vector (0, 5) (in 2 dimensions with the positive y axis as 'up'). Another quantity represented by a vector is force, since it has a magnitude and direction. Vectors also describe many other physical quantities, such as displacement, acceleration, momentum, and angular momentum. Other physical vectors, such as the electric and magnetic field, are represented as a system of vectors at each point of a physical space; that is, a vector field.

Tensors also have extensive applications in physics:

Dimensions

In general relativity, four-dimensional vectors, or four-vectors, are required. These four dimensions are length, height, width and time. A "point" in this context would be an event, as it has both a location and a time. Similar to vectors, tensors in relativity require four dimensions. One example is the Riemann curvature tensor.

Coordinate transformation

In physics, as well as mathematics, a vector is often identified with a tuple, or list of numbers, which depend on a coordinate system or reference frame. If the coordinates are transformed, such as by rotation or stretching the coordinate system, the components of the vector also transform. The vector itself does not change, but the reference frame does. This means that the components of the vector have to change to compensate.

The vector is called covariant or contravariant depending on how the transformation of the vector's components is related to the transformation of coordinates.

In Einstein notation, contravariant vectors and components of tensors are shown with superscripts, e.g. xi, and covariant vectors and components of tensors with subscripts, e.g. xi. Indices are "raised" or "lowered" by multiplication by an appropriate matrix, often the identity matrix.

Coordinate transformation is important because relativity states that there is not one reference point (or perspective) in the universe that is more favored than another. On earth, we use dimensions like north, east, and elevation, which are used throughout the entire planet. There is no such system for space. Without a clear reference grid, it becomes more accurate to describe the four dimensions as towards/away, left/right, up/down and past/future. As an example event, assume that Earth is a motionless object, and consider the signing of the Declaration of Independence. To a modern observer on Mount Rainier looking east, the event is ahead, to the right, below, and in the past. However, to an observer in medieval England looking north, the event is behind, to the left, neither up nor down, and in the future. The event itself has not changed: the location of the observer has.

Oblique axes

An oblique coordinate system is one in which the axes are not necessarily orthogonal to each other; that is, they meet at angles other than right angles. When using coordinate transformations as described above, the new coordinate system will often appear to have oblique axes compared to the old system.

Nontensors

A nontensor is a tensor-like quantity that behaves like a tensor in the raising and lowering of indices, but that does not transform like a tensor under a coordinate transformation. For example, Christoffel symbols cannot be tensors themselves if the coordinates do not change in a linear way.

In general relativity, one cannot describe the energy and momentum of the gravitational field by an energy–momentum tensor. Instead, one introduces objects that behave as tensors only with respect to restricted coordinate transformations. Strictly speaking, such objects are not tensors at all. A famous example of such a pseudotensor is the Landau–Lifshitz pseudotensor.

Curvilinear coordinates and curved spacetime

High-precision test of general relativity by the Cassini space probe (artist's impression): radio signals sent between the Earth and the probe (green wave) are delayed by the warping of space and time (blue lines) due to the Sun's mass. That is, the Sun's mass causes the regular grid coordinate system (in blue) to distort and have curvature. The radio wave then follows this curvature and moves toward the Sun. Cassini-science-br.jpg
High-precision test of general relativity by the Cassini space probe (artist's impression): radio signals sent between the Earth and the probe (green wave) are delayed by the warping of space and time (blue lines) due to the Sun's mass. That is, the Sun's mass causes the regular grid coordinate system (in blue) to distort and have curvature. The radio wave then follows this curvature and moves toward the Sun.

Curvilinear coordinates are coordinates in which the angles between axes can change from point to point. This means that rather than having a grid of straight lines, the grid instead has curvature.

A good example of this is the surface of the Earth. While maps frequently portray north, south, east and west as a simple square grid, that is not in fact the case. Instead, the longitude lines running north and south are curved and meet at the north pole. This is because the Earth is not flat, but instead round.

In general relativity, energy and mass have curvature effects on the four dimensions of the universe (= spacetime). This curvature gives rise to the gravitational force. A common analogy is placing a heavy object on a stretched out rubber sheet, causing the sheet to bend downward. This curves the coordinate system around the object, much like an object in the universe curves the coordinate system it sits in. The mathematics here are conceptually more complex than on Earth, as it results in four dimensions of curved coordinates instead of three as used to describe a curved 2D surface.

Parallel transport

Example: Parallel displacement along a circle of a three-dimensional ball embedded in two dimensions. The circle of radius r is embedded in a two-dimensional space characterized by the coordinates z and z. The circle itself is characterized by coordinates y and y in the two-dimensional space. The circle itself is one-dimensional and can be characterized by its arc length x. The coordinate y is related to the coordinate x through the relation y = r cos
.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num,.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0 0.1em}.mw-parser-output .sfrac .den{border-top:1px solid}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}
x/r and y = r sin
x/r. This gives
[?]y/[?]x = -sin
x/r and
[?]y/[?]x = cos
x/r In this case the metric is a scalar and is given by g = cos
x/r + sin
x/r = 1. The interval is then ds = g dx = dx. The interval is just equal to the arc length as expected. Parallel displacement.svg
Example: Parallel displacement along a circle of a three-dimensional ball embedded in two dimensions. The circle of radius r is embedded in a two-dimensional space characterized by the coordinates z and z. The circle itself is characterized by coordinates y and y in the two-dimensional space. The circle itself is one-dimensional and can be characterized by its arc length x. The coordinate y is related to the coordinate x through the relation y = r cos x/r and y = r sin x/r. This gives y/x = −sin x/r and y/x = cos x/r In this case the metric is a scalar and is given by g = cos x/r + sin x/r = 1. The interval is then ds = g dx = dx. The interval is just equal to the arc length as expected.

The interval in a high-dimensional space

In a Euclidean space, the separation between two points is measured by the distance between the two points. The distance is purely spatial, and is always positive. In spacetime, the separation between two events is measured by the invariant interval between the two events, which takes into account not only the spatial separation between the events, but also their separation in time. The interval, s2, between two events is defined as:

     (spacetime interval),

where c is the speed of light, and Δr and Δt denote differences of the space and time coordinates, respectively, between the events. The choice of signs for s2 above follows the space-like convention (−+++). A notation like Δr2 means r)2. The reason s2 is called the interval and not s is that s2 can be positive, zero or negative.

Spacetime intervals may be classified into three distinct types, based on whether the temporal separation (c2Δt2) or the spatial separation (Δr2) of the two events is greater: time-like, light-like or space-like.

Certain types of world lines are called geodesics of the spacetime – straight lines in the case of flat Minkowski spacetime and their closest equivalent in the curved spacetime of general relativity. In the case of purely time-like paths, geodesics are (locally) the paths of greatest separation (spacetime interval) as measured along the path between two events, whereas in Euclidean space and Riemannian manifolds, geodesics are paths of shortest distance between two points. [4] [5] The concept of geodesics becomes central in general relativity, since geodesic motion may be thought of as "pure motion" (inertial motion) in spacetime, that is, free from any external influences.

The covariant derivative

The covariant derivative is a generalization of the directional derivative from vector calculus. As with the directional derivative, the covariant derivative is a rule, which takes as its inputs: (1) a vector, u, (along which the derivative is taken) defined at a point P, and (2) a vector field, v, defined in a neighborhood of P. The output is a vector, also at the point P. The primary difference from the usual directional derivative is that the covariant derivative must, in a certain precise sense, be independent of the manner in which it is expressed in a coordinate system.

Parallel transport

Given the covariant derivative, one can define the parallel transport of a vector v at a point P along a curve γ starting at P. For each point x of γ, the parallel transport of v at x will be a function of x, and can be written as v(x), where v(0) = v. The function v is determined by the requirement that the covariant derivative of v(x) along γ is 0. This is similar to the fact that a constant function is one whose derivative is constantly 0.

Christoffel symbols

The equation for the covariant derivative can be written in terms of Christoffel symbols. The Christoffel symbols find frequent use in Einstein's theory of general relativity, where spacetime is represented by a curved 4-dimensional Lorentz manifold with a Levi-Civita connection. The Einstein field equations – which determine the geometry of spacetime in the presence of matter – contain the Ricci tensor. Since the Ricci tensor is derived from the Riemann curvature tensor, which can be written in terms of Christoffel symbols, a calculation of the Christoffel symbols is essential. Once the geometry is determined, the paths of particles and light beams are calculated by solving the geodesic equations in which the Christoffel symbols explicitly appear.

Geodesics

In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational force, is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic.

In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance). Thus, for example, the path of a planet orbiting around a star is the projection of a geodesic of the curved 4-dimensional spacetime geometry around the star onto 3-dimensional space.

A curve is a geodesic if the tangent vector of the curve at any point is equal to the parallel transport of the tangent vector of the base point.

Curvature tensor

The Riemann curvature tensor Rρσμν tells us, mathematically, how much curvature there is in any given region of space. In flat space this tensor is zero.

Contracting the tensor produces 2 more mathematical objects:

  1. The Ricci tensor: Rσν, comes from the need in Einstein's theory for a curvature tensor with only 2 indices. It is obtained by averaging certain portions of the Riemann curvature tensor.
  2. The scalar curvature: R, the simplest measure of curvature, assigns a single scalar value to each point in a space. It is obtained by averaging the Ricci tensor.

The Riemann curvature tensor can be expressed in terms of the covariant derivative.

The Einstein tensor G is a rank-2 tensor defined over pseudo-Riemannian manifolds. In index-free notation it is defined as

where R is the Ricci tensor, g is the metric tensor and R is the scalar curvature. It is used in the Einstein field equations.

Stress–energy tensor

Contravariant components of the stress-energy tensor StressEnergyTensor contravariant.svg
Contravariant components of the stress–energy tensor

The stress–energy tensor (sometimes stress–energy–momentum tensor or energy–momentum tensor) is a tensor quantity in physics that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. The stress–energy tensor is the source of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity. Because this tensor has 2 indices (see next section) the Riemann curvature tensor has to be contracted into the Ricci tensor, also with 2 indices.

Einstein equation

The Einstein field equations (EFE) or Einstein's equations are a set of 10 equations in Albert Einstein's general theory of relativity which describe the fundamental interaction of gravitation as a result of spacetime being curved by matter and energy. [6] First published by Einstein in 1915 [7] as a tensor equation, the EFE equate local spacetime curvature (expressed by the Einstein tensor) with the local energy and momentum within that spacetime (expressed by the stress–energy tensor). [8]

The Einstein field equations can be written as

where Gμν is the Einstein tensor and Tμν is the stress–energy tensor.

This implies that the curvature of space (represented by the Einstein tensor) is directly connected to the presence of matter and energy (represented by the stress–energy tensor).

Schwarzschild solution and black holes

In Einstein's theory of general relativity, the Schwarzschild metric (also Schwarzschild vacuum or Schwarzschild solution), is a solution to the Einstein field equations which describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, the angular momentum of the mass, and the universal cosmological constant are all zero. The solution is a useful approximation for describing slowly rotating astronomical objects such as many stars and planets, including Earth and the Sun. The solution is named after Karl Schwarzschild, who first published the solution in 1916, just before his death.

According to Birkhoff's theorem, the Schwarzschild metric is the most general spherically symmetric, vacuum solution of the Einstein field equations. A Schwarzschild black hole or static black hole is a black hole that has no charge or angular momentum. A Schwarzschild black hole is described by the Schwarzschild metric, and cannot be distinguished from any other Schwarzschild black hole except by its mass.

See also

Notes

  1. Ivanov 2001
  2. Heinbockel 2001
  3. From Latin vectus, perfect participle of vehere, "to carry". For historical development of the word vector, see "vector n." . Oxford English Dictionary (Online ed.). Oxford University Press.(Subscription or participating institution membership required.) and Jeff Miller. "Earliest Known Uses of Some of the Words of Mathematics" . Retrieved 2007-05-25.
  4. This characterization is not universal: both the arcs between two points of a great circle on a sphere are geodesics.
  5. Berry, Michael V. (1989). Principles of Cosmology and Gravitation. CRC Press. p. 58. ISBN   0-85274-037-9.
  6. Einstein, Albert (1916). "The Foundation of the General Theory of Relativity". Annalen der Physik . 354 (7): 769. Bibcode:1916AnP...354..769E. doi:10.1002/andp.19163540702. Archived from the original (PDF) on 2006-08-29.
  7. Einstein, Albert (November 25, 1915). "Die Feldgleichungen der Gravitation". Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin: 844–847. Retrieved 2006-09-12.
  8. Misner, Charles W.; Thorne, Kip S.; Wheeler, John Archibald (1973). Gravitation. San Francisco: W. H. Freeman. ISBN   978-0-7167-0344-0. Chapter 34, p 916

Related Research Articles

<span class="mw-page-title-main">Differential geometry</span> Branch of mathematics dealing with functions and geometric structures on differentiable manifolds

Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries.

<span class="mw-page-title-main">Stress–energy tensor</span> Tensor describing energy momentum density in spacetime

The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

In Einstein's theory of general relativity, the Schwarzschild metric is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero. The solution is a useful approximation for describing slowly rotating astronomical objects such as many stars and planets, including Earth and the Sun. It was found by Karl Schwarzschild in 1916.

The Penrose–Hawking singularity theorems are a set of results in general relativity that attempt to answer the question of when gravitation produces singularities. The Penrose singularity theorem is a theorem in semi-Riemannian geometry and its general relativistic interpretation predicts a gravitational singularity in black hole formation. The Hawking singularity theorem is based on the Penrose theorem and it is interpreted as a gravitational singularity in the Big Bang situation. Penrose was awarded the Nobel Prize in Physics in 2020 "for the discovery that black hole formation is a robust prediction of the general theory of relativity", which he shared with Reinhard Genzel and Andrea Ghez.

In the general theory of relativity, the Einstein field equations relate the geometry of spacetime to the distribution of matter within it.

Teleparallelism, was an attempt by Albert Einstein to base a unified theory of electromagnetism and gravity on the mathematical structure of distant parallelism, also referred to as absolute or teleparallelism. In this theory, a spacetime is characterized by a curvature-free linear connection in conjunction with a metric tensor field, both defined in terms of a dynamical tetrad field.

In differential geometry, the Einstein tensor is used to express the curvature of a pseudo-Riemannian manifold. In general relativity, it occurs in the Einstein field equations for gravitation that describe spacetime curvature in a manner that is consistent with conservation of energy and momentum.

In general relativity, a vacuum solution is a Lorentzian manifold whose Einstein tensor vanishes identically. According to the Einstein field equation, this means that the stress–energy tensor also vanishes identically, so that no matter or non-gravitational fields are present. These are distinct from the electrovacuum solutions, which take into account the electromagnetic field in addition to the gravitational field. Vacuum solutions are also distinct from the lambdavacuum solutions, where the only term in the stress–energy tensor is the cosmological constant term.

In general relativity, the pp-wave spacetimes, or pp-waves for short, are an important family of exact solutions of Einstein's field equation. The term pp stands for plane-fronted waves with parallel propagation, and was introduced in 1962 by Jürgen Ehlers and Wolfgang Kundt.

In physics and mathematics, a pseudotensor is usually a quantity that transforms like a tensor under an orientation-preserving coordinate transformation but additionally changes sign under an orientation-reversing coordinate transformation, which is a transformation that can be expressed as a proper rotation followed by reflection. This is a generalization of a pseudovector. To evaluate a tensor or pseudotensor sign, it has to be contracted with some vectors, as many as its rank is, belonging to the space where the rotation is made while keeping the tensor coordinates unaffected. Under improper rotation a pseudotensor and a proper tensor of the same rank will have different sign which depends on the rank being even or odd. Sometimes inversion of the axes is used as an example of an improper rotation to see the behaviour of a pseudotensor, but it works only if vector space dimensions is odd otherwise inversion is a proper rotation without an additional reflection.

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

Spacetime symmetries are features of spacetime that can be described as exhibiting some form of symmetry. The role of symmetry in physics is important in simplifying solutions to many problems. Spacetime symmetries are used in the study of exact solutions of Einstein's field equations of general relativity. Spacetime symmetries are distinguished from internal symmetries.

In general relativity, the metric tensor is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

In general relativity, if two objects are set in motion along two initially parallel trajectories, the presence of a tidal gravitational force will cause the trajectories to bend towards or away from each other, producing a relative acceleration between the objects.

In theoretical physics, Nordström's theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913 respectively. The first was quickly dismissed, but the second became the first known example of a metric theory of gravitation, in which the effects of gravitation are treated entirely in terms of the geometry of a curved spacetime.

A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.

This article will use the Einstein summation convention.

Gauge theory gravity (GTG) is a theory of gravitation cast in the mathematical language of geometric algebra. To those familiar with general relativity, it is highly reminiscent of the tetrad formalism although there are significant conceptual differences. Most notably, the background in GTG is flat, Minkowski spacetime. The equivalence principle is not assumed, but instead follows from the fact that the gauge covariant derivative is minimally coupled. As in general relativity, equations structurally identical to the Einstein field equations are derivable from a variational principle. A spin tensor can also be supported in a manner similar to Einstein–Cartan–Sciama–Kibble theory. GTG was first proposed by Lasenby, Doran, and Gull in 1998 as a fulfillment of partial results presented in 1993. The theory has not been widely adopted by the rest of the physics community, who have mostly opted for differential geometry approaches like that of the related gauge gravitation theory.

References