Introduction to systolic geometry

Last updated

Systolic geometry is a branch of differential geometry, a field within mathematics, studying problems such as the relationship between the area inside a closed curve C, and the length or perimeter of C. Since the area A may be small while the length l is large, when C looks elongated, the relationship can only take the form of an inequality. What is more, such an inequality would be an upper bound for A: there is no interesting lower bound just in terms of the length.

Contents

Mikhail Gromov once voiced the opinion that the isoperimetric inequality was known already to the Ancient Greeks. The mythological tale of Dido, Queen of Carthage shows that problems about making a maximum area for a given perimeter were posed in a natural way, in past eras.

The relation between length and area is closely related to the physical phenomenon known as surface tension, which gives a visible form to the comparable relation between surface area and volume. The familiar shapes of drops of water express minima of surface area.

Room with a pillar is not simply connected Building Interior Lisbonne (Unsplash).jpg
Room with a pillar is not simply connected

The purpose of this article is to explain another such relation between length and area. A space is called simply connected if every loop in the space can be contracted to a point in a continuous fashion. For example, a room with a pillar in the middle, connecting floor to ceiling, is not simply connected. In geometry, a systole is a distance which is characteristic of a compact metric space which is not simply connected. It is the length of a shortest loop in the space that cannot be contracted to a point in the space. In the room example, absent other features, the systole would be the circumference of the pillar. Systolic geometry gives lower bounds for various attributes of the space in terms of its systole.

It is known that the Fubini–Study metric is the natural metric for the geometrisation of quantum mechanics. In an intriguing connection to global geometric phenomena, it turns out that the Fubini–Study metric can be characterized as the boundary case of equality in Gromov's inequality for complex projective space, involving an area quantity called the 2-systole, pointing to a possible connection to quantum mechanical phenomena.

In the following, these systolic inequalities will be compared to the classical isoperimetric inequalities, which can in turn be motivated by physical phenomena observed in the behavior of a water drop.

Surface tension and shape of a water drop

Water beading on a leaf Dew 2.jpg
Water beading on a leaf

Perhaps the most familiar physical manifestation of the 3-dimensional isoperimetric inequality is the shape of a drop of water. Namely, a drop will typically assume a symmetric round shape. Since the amount of water in a drop is fixed, surface tension forces the drop into a shape which minimizes the surface area of the drop, namely a round sphere. Thus the round shape of the drop is a consequence of the phenomenon of surface tension. Mathematically, this phenomenon is expressed by the isoperimetric inequality.

Isoperimetric inequality in the plane

The solution to the isoperimetric problem in the plane is usually expressed in the form of an inequality that relates the length of a closed curve and the area of the planar region that it encloses. The isoperimetric inequality states that

and that the equality holds if and only if the curve is a round circle. The inequality is an upper bound for area in terms of length.

Central symmetry

Recall the notion of central symmetry: a Euclidean polyhedron is called centrally symmetric if it is invariant under the antipodal map

Thus, in the plane central symmetry is the rotation by 180 degrees. For example, an ellipse is centrally symmetric, as is any ellipsoid in 3-space.

Property of a centrally symmetric polyhedron in 3-space

There is a geometric inequality that is in a sense dual to the isoperimetric inequality in the following sense. Both involve a length and an area. The isoperimetric inequality is an upper bound for area in terms of length. There is a geometric inequality which provides an upper bound for a certain length in terms of area. More precisely it can be described as follows.

Any centrally symmetric convex body of surface area can be squeezed through a noose of length , with the tightest fit achieved by a sphere. This property is equivalent to a special case of Pu's inequality, one of the earliest systolic inequalities.

For example, an ellipsoid is an example of a convex centrally symmetric body in 3-space. It may be helpful to the reader to develop an intuition for the property mentioned above in the context of thinking about ellipsoidal examples.

An alternative formulation is as follows. Every convex centrally symmetric body in admits a pair of opposite (antipodal) points and a path of length joining them and lying on the boundary of , satisfying

Notion of systole

Shortest loop on a torus TorusSystoleLoop.png
Shortest loop on a torus

The systole of a compact metric space is a metric invariant of , defined to be the least length of a noncontractible loop in . We will denote it as follows:

Note that a loop minimizing length is necessarily a closed geodesic. When is a graph, the invariant is usually referred to as the girth, ever since the 1947 article by William Tutte. Possibly inspired by Tutte's article, Charles Loewner started thinking about systolic questions on surfaces in the late 1940s, resulting in a 1950 thesis by his student P. M. Pu. The actual term systole itself was not coined until a quarter century later, by Marcel Berger.

This line of research was, apparently, given further impetus by a remark of René Thom, in a conversation with Berger in the library of Strasbourg University during the 1961–62 academic year, shortly after the publication of the papers of R. Accola and C. Blatter. Referring to these systolic inequalities, Thom reportedly exclaimed: Mais c'est fondamental! [These results are of fundamental importance!]

Subsequently, Berger popularized the subject in a series of articles and books, most recently in the March 2008 issue of the Notices of the American Mathematical Society. A bibliography at the Website for systolic geometry and topology currently contains over 170 articles. Systolic geometry is a rapidly developing field, featuring a number of recent publications in leading journals. Recently, an intriguing link has emerged with the Lusternik–Schnirelmann category. The existence of such a link can be thought of as a theorem in systolic topology.

The real projective plane

An animation of the Roman surface representing RP in R Steiner's Roman Surface.gif
An animation of the Roman surface representing RP in R

In projective geometry, the real projective plane is defined as the collection of lines through the origin in . The distance function on is most readily understood from this point of view. Namely, the distance between two lines through the origin is by definition the angle between them (measured in radians), or more precisely the lesser of the two angles. This distance function corresponds to the metric of constant Gaussian curvature +1.

Alternatively, can be defined as the surface obtained by identifying each pair of antipodal points on the 2-sphere.

Other metrics on can be obtained by quotienting metrics on imbedded in 3-space in a centrally symmetric way.

Topologically, can be obtained from the Möbius strip by attaching a disk along the boundary.

Among closed surfaces, the real projective plane is the simplest non-orientable such surface.

Pu's inequality

Pu's inequality for the real projective plane applies to general Riemannian metrics on .

A student of Charles Loewner's, Pao Ming Pu proved in a 1950 thesis (published in 1952) that every metric on the real projective plane satisfies the optimal inequality

where is the systole. The boundary case of equality is attained precisely when the metric is of constant Gaussian curvature. Alternatively, the inequality can be presented as follows:

There is a vast generalisation of Pu's inequality, due to Mikhail Gromov, called Gromov's systolic inequality for essential manifolds. To state his result, one requires a topological notion of an essential manifold.

Loewner's torus inequality

Shortest loop on a torus TorusSystoleLoop.png
Shortest loop on a torus

Similarly to Pu's inequality, Loewner's torus inequality relates the total area, to the systole, i.e. least length of a noncontractible loop on the torus :

The boundary case of equality is attained if and only if the metric is homothetic to the flat metric obtained as the quotient of by the lattice formed by the Eisenstein integers.

Bonnesen's inequality

The classical Bonnesen's inequality is the strengthened isoperimetric inequality

Here is the area of the region bounded by a closed Jordan curve of length (perimeter) in the plane, is the circumradius of the bounded region, and is its inradius. The error term on the right hand side is traditionally called the isoperimetric defect. There exists a similar strengthening of Loewner's inequality.

Loewner's inequality with a defect term

The explanation of the strengthened version of Loewner's inequality is somewhat more technical than the rest of this article. It seems worth including it here for the sake of completeness. The strengthened version is the inequality

where Var is the probabilistic variance while f is the conformal factor expressing the metric g in terms of the flat metric of unit area in the conformal class of g. The proof results from a combination of the computational formula for the variance and Fubini's theorem (see Horowitz et al, 2009).

See also

Related Research Articles

In differential geometry, a Riemannian manifold or Riemannian space(M, g), so called after the German mathematician Bernhard Riemann, is a real, smooth manifold M equipped with a positive-definite inner product gp on the tangent space TpM at each point p.

<span class="mw-page-title-main">Hyperbolic space</span> Non-Euclidean geometry

In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane.

In mathematics, the isoperimetric inequality is a geometric inequality involving the perimeter of a set and its volume. In -dimensional space the inequality lower bounds the surface area or perimeter of a set by its volume ,

<span class="mw-page-title-main">Systolic geometry</span> Form of differential geometry

In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner and developed by Mikhail Gromov, Michael Freedman, Peter Sarnak, Mikhail Katz, Larry Guth, and others, in its arithmetical, ergodic, and topological manifestations. See also a slower-paced Introduction to systolic geometry.

<span class="mw-page-title-main">Hyperbolic group</span> Mathematical concept

In group theory, more precisely in geometric group theory, a hyperbolic group, also known as a word hyperbolic group or Gromov hyperbolic group, is a finitely generated group equipped with a word metric satisfying certain properties abstracted from classical hyperbolic geometry. The notion of a hyperbolic group was introduced and developed by Mikhail Gromov (1987). The inspiration came from various existing mathematical theories: hyperbolic geometry but also low-dimensional topology, and combinatorial group theory. In a very influential chapter from 1987, Gromov proposed a wide-ranging research program. Ideas and foundational material in the theory of hyperbolic groups also stem from the work of George Mostow, William Thurston, James W. Cannon, Eliyahu Rips, and many others.

<span class="mw-page-title-main">Charles Loewner</span> American mathematician

Charles Loewner was an American mathematician. His name was Karel Löwner in Czech and Karl Löwner in German.

<span class="mw-page-title-main">Loewner's torus inequality</span>

In differential geometry, Loewner's torus inequality is an inequality due to Charles Loewner. It relates the systole and the area of an arbitrary Riemannian metric on the 2-torus.

<span class="mw-page-title-main">Pu's inequality</span>

In differential geometry, Pu's inequality, proved by Pao Ming Pu, relates the area of an arbitrary Riemannian surface homeomorphic to the real projective plane with the lengths of the closed curves contained in it.

In Riemannian geometry, Gromov's optimal stable 2-systolic inequality is the inequality

In the mathematical field of Riemannian geometry, M. Gromov's systolic inequality bounds the length of the shortest non-contractible loop on a Riemannian manifold in terms of the volume of the manifold. Gromov's systolic inequality was proved in 1983; it can be viewed as a generalisation, albeit non-optimal, of Loewner's torus inequality and Pu's inequality for the real projective plane.

In differential geometry, Mikhail Gromov's filling area conjecture asserts that the hemisphere has minimum area among the orientable surfaces that fill a closed curve of given length without introducing shortcuts between its points.

In Riemannian geometry, the filling radius of a Riemannian manifold X is a metric invariant of X. It was originally introduced in 1983 by Mikhail Gromov, who used it to prove his systolic inequality for essential manifolds, vastly generalizing Loewner's torus inequality and Pu's inequality for the real projective plane, and creating systolic geometry in its modern form.

In the mathematical theory of Riemann surfaces, the first Hurwitz triplet is a triple of distinct Hurwitz surfaces with the identical automorphism group of the lowest possible genus, namely 14. The explanation for this phenomenon is arithmetic. Namely, in the ring of integers of the appropriate number field, the rational prime 13 splits as a product of three distinct prime ideals. The principal congruence subgroups defined by the triplet of primes produce Fuchsian groups corresponding to the triplet of Riemann surfaces.

In geometry, an essential manifold is a special type of closed manifold. The notion was first introduced explicitly by Mikhail Gromov.

In mathematics, systolic inequalities for curves on surfaces were first studied by Charles Loewner in 1949. Given a closed surface, its systole, denoted sys, is defined to be the least length of a loop that cannot be contracted to a point on the surface. The systolic area of a metric is defined to be the ratio area/sys2. The systolic ratio SR is the reciprocal quantity sys2/area. See also Introduction to systolic geometry.

The volume entropy is an asymptotic invariant of a compact Riemannian manifold that measures the exponential growth rate of the volume of metric balls in its universal cover. This concept is closely related with other notions of entropy found in dynamical systems and plays an important role in differential geometry and geometric group theory. If the manifold is nonpositively curved then its volume entropy coincides with the topological entropy of the geodesic flow. It is of considerable interest in differential geometry to find the Riemannian metric on a given smooth manifold which minimizes the volume entropy, with locally symmetric spaces forming a basic class of examples.

In differential geometry, systolic freedom refers to the fact that closed Riemannian manifolds may have arbitrarily small volume regardless of their systolic invariants. That is, systolic invariants or products of systolic invariants do not in general provide universal lower bounds for the total volume of a closed Riemannian manifold.

In the mathematical subject of geometric group theory, a Dehn function, named after Max Dehn, is an optimal function associated to a finite group presentation which bounds the area of a relation in that group in terms of the length of that relation. The growth type of the Dehn function is a quasi-isometry invariant of a finitely presented group. The Dehn function of a finitely presented group is also closely connected with non-deterministic algorithmic complexity of the word problem in groups. In particular, a finitely presented group has solvable word problem if and only if the Dehn function for a finite presentation of this group is recursive. The notion of a Dehn function is motivated by isoperimetric problems in geometry, such as the classic isoperimetric inequality for the Euclidean plane and, more generally, the notion of a filling area function that estimates the area of a minimal surface in a Riemannian manifold in terms of the length of the boundary curve of that surface.

In mathematics, the Besicovitch inequality is a geometric inequality relating volume of a set and distances between certain subsets of its boundary. The inequality was first formulated by Abram Besicovitch.

References