Filling radius

Last updated

In Riemannian geometry, the filling radius of a Riemannian manifold X is a metric invariant of X. It was originally introduced in 1983 by Mikhail Gromov, who used it to prove his systolic inequality for essential manifolds, vastly generalizing Loewner's torus inequality and Pu's inequality for the real projective plane, and creating systolic geometry in its modern form.

Contents

The filling radius of a simple loop C in the plane is defined as the largest radius, R > 0, of a circle that fits inside C:

Dual definition via neighborhoods

There is a kind of a dual point of view that allows one to generalize this notion in an extremely fruitful way, as shown by Gromov. Namely, we consider the -neighborhoods of the loop C, denoted

As increases, the -neighborhood swallows up more and more of the interior of the loop. The last point to be swallowed up is precisely the center of a largest inscribed circle. Therefore, we can reformulate the above definition by defining to be the infimum of such that the loop C contracts to a point in .

Given a compact manifold X imbedded in, say, Euclidean space E, we could define the filling radius relative to the imbedding, by minimizing the size of the neighborhood in which X could be homotoped to something smaller dimensional, e.g., to a lower-dimensional polyhedron. Technically it is more convenient to work with a homological definition.

Homological definition

Denote by A the coefficient ring or , depending on whether or not X is orientable. Then the fundamental class, denoted [X], of a compact n-dimensional manifold X, is a generator of the homology group , and we set

where is the inclusion homomorphism.

To define an absolute filling radius in a situation where X is equipped with a Riemannian metric g, Gromov proceeds as follows. One exploits Kuratowski embedding. One imbeds X in the Banach space of bounded Borel functions on X, equipped with the sup norm . Namely, we map a point to the function defined by the formula for all , where d is the distance function defined by the metric. By the triangle inequality we have and therefore the imbedding is strongly isometric, in the precise sense that internal distance and ambient distance coincide. Such a strongly isometric imbedding is impossible if the ambient space is a Hilbert space, even when X is the Riemannian circle (the distance between opposite points must be π, not 2!). We then set in the formula above, and define

Properties

See also

Related Research Articles

<span class="mw-page-title-main">Metric space</span> Mathematical space with a notion of distance

In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.

In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.

<span class="mw-page-title-main">Isometry</span> Distance-preserving mathematical transformation

In mathematics, an isometry is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος isos meaning "equal", and μέτρον metron meaning "measure". If the transformation is from a metric space to itself, it is a kind of geometric transformation known as a motion.

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

In the mathematical field of Riemannian geometry, the scalar curvature is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls. In the context of the differential geometry of surfaces, the scalar curvature is twice the Gaussian curvature, and completely characterizes the curvature of a surface. In higher dimensions, however, the scalar curvature only represents one particular part of the Riemann curvature tensor.

<span class="mw-page-title-main">Hyperbolic space</span> Non-Euclidean geometry

In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to −1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane.

In mathematics, the isoperimetric inequality is a geometric inequality involving the square of the circumference of a closed curve in the plane and the area of a plane region it encloses, as well as its various generalizations. Isoperimetric literally means "having the same perimeter". Specifically, the isoperimetric inequality states, for the length L of a closed curve and the area A of the planar region that it encloses, that

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

In mathematics, the Bishop–Gromov inequality is a comparison theorem in Riemannian geometry, named after Richard L. Bishop and Mikhail Gromov. It is closely related to Myers' theorem, and is the key point in the proof of Gromov's compactness theorem.

<span class="mw-page-title-main">Systolic geometry</span> Form of differential geometry

In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner and developed by Mikhail Gromov, Michael Freedman, Peter Sarnak, Mikhail Katz, Larry Guth, and others, in its arithmetical, ergodic, and topological manifestations. See also Introduction to systolic geometry.

In differential geometry, the Margulis lemma is a result about discrete subgroups of isometries of a non-positively curved Riemannian manifold. Roughly, it states that within a fixed radius, usually called the Margulis constant, the structure of the orbits of such a group cannot be too complicated. More precisely, within this radius around a point all points in its orbit are in fact in the orbit of a nilpotent subgroup.

In differential geometry, Loewner's torus inequality is an inequality due to Charles Loewner. It relates the systole and the area of an arbitrary Riemannian metric on the 2-torus.

<span class="mw-page-title-main">Pu's inequality</span> Inequality in differential geometry

In differential geometry, Pu's inequality, proved by Pao Ming Pu, relates the area of an arbitrary Riemannian surface homeomorphic to the real projective plane with the lengths of the closed curves contained in it.

In Riemannian geometry, Gromov's optimal stable 2-systolic inequality is the inequality

In the mathematical field of Riemannian geometry, M. Gromov's systolic inequality bounds the length of the shortest non-contractible loop on a Riemannian manifold in terms of the volume of the manifold. Gromov's systolic inequality was proved in 1983; it can be viewed as a generalisation, albeit non-optimal, of Loewner's torus inequality and Pu's inequality for the real projective plane.

In differential geometry, Mikhail Gromov's filling area conjecture asserts that the hemisphere has minimum area among the orientable surfaces that fill a closed curve of given length without introducing shortcuts between its points.

<span class="mw-page-title-main">Introduction to systolic geometry</span> Non-technical introduction to systolic geometry

Systolic geometry is a branch of differential geometry, a field within mathematics, studying problems such as the relationship between the area inside a closed curve C, and the length or perimeter of C. Since the area A may be small while the length l is large, when C looks elongated, the relationship can only take the form of an inequality. What is more, such an inequality would be an upper bound for A: there is no interesting lower bound just in terms of the length.

In mathematics, systolic inequalities for curves on surfaces were first studied by Charles Loewner in 1949. Given a closed surface, its systole, denoted sys, is defined to be the least length of a loop that cannot be contracted to a point on the surface. The systolic area of a metric is defined to be the ratio area/sys2. The systolic ratio SR is the reciprocal quantity sys2/area. See also Introduction to systolic geometry.

In geometry of normed spaces, the Holmes–Thompson volume is a notion of volume that allows to compare sets contained in different normed spaces. It was introduced by Raymond D. Holmes and Anthony Charles Thompson.

In geometry, a valuation is a finitely additive function from a collection of subsets of a set to an abelian semigroup. For example, Lebesgue measure is a valuation on finite unions of convex bodies of Other examples of valuations on finite unions of convex bodies of are surface area, mean width, and Euler characteristic.

References