Secondary calculus and cohomological physics

Last updated

In mathematics, secondary calculus is a proposed expansion of classical differential calculus on manifolds, to the "space" of solutions of a (nonlinear) partial differential equation. It is a sophisticated theory at the level of jet spaces and employing algebraic methods.

Contents

Secondary calculus

Secondary calculus acts on the space of solutions of a system of partial differential equations (usually non-linear equations). When the number of independent variables is zero, i.e. the equations are algebraic ones, secondary calculus reduces to classical differential calculus.

All objects in secondary calculus are cohomology classes of differential complexes growing on diffieties. The latter are, in the framework of secondary calculus, the analog of smooth manifolds.

Cohomological physics

Cohomological physics was born with Gauss's theorem, describing the electric charge contained inside a given surface in terms of the flux of the electric field through the surface itself. Flux is the integral of a differential form and, consequently, a de Rham cohomology class. It is not by chance that formulas of this kind, such as the well known Stokes formula, though being a natural part of classical differential calculus, have entered in modern mathematics from physics.

Classical analogues

All the constructions in classical differential calculus have an analog in secondary calculus. For instance, higher symmetries of a system of partial differential equations are the analog of vector fields on differentiable manifolds. The Euler operator, which associates to each variational problem the corresponding Euler–Lagrange equation, is the analog of the classical differential associating to a function on a variety its differential. The Euler operator is a secondary differential operator of first order, even if, according to its expression in local coordinates, it looks like one of infinite order. More generally, the analog of differential forms in secondary calculus are the elements of the first term of the so-called C-spectral sequence, and so on.

The simplest diffieties are infinite prolongations of partial differential equations, which are subvarieties of infinite jet spaces. The latter are infinite dimensional varieties that can not be studied by means of standard functional analysis. On the contrary, the most natural language in which to study these objects is differential calculus over commutative algebras. Therefore, the latter must be regarded as a fundamental tool of secondary calculus. On the other hand, differential calculus over commutative algebras gives the possibility to develop algebraic geometry as if it were differential geometry.

Theoretical physics

Recent developments of particle physics, based on quantum field theories and its generalizations, have led to understand the deep cohomological nature of the quantities describing both classical and quantum fields. The turning point was the discovery of the famous BRST transformation. For instance, it was understood that observables in field theory are classes in horizontal de Rham cohomology which are invariant under the corresponding gauge group and so on. This current in modern theoretical physics is actually growing[ citation needed ] and it is called Cohomological Physics.

It is relevant that secondary calculus and cohomological physics, which developed for twenty years independently from each other, arrived at the same results. Their confluence took place at the international conference Secondary Calculus and Cohomological Physics (Moscow, August 24–30, 1997).

Prospects

A large number of modern mathematical theories harmoniously converges in the framework of secondary calculus, for instance: commutative algebra and algebraic geometry, homological algebra and differential topology, Lie group and Lie algebra theory, differential geometry, etc.

See also

Related Research Articles

<span class="mw-page-title-main">Differential geometry</span> Branch of mathematics dealing with functions and geometric structures on differentiable manifolds

Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries.

<span class="mw-page-title-main">Algebraic topology</span> Branch of mathematics

Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.

<span class="mw-page-title-main">De Rham cohomology</span> Cohomology with real coefficients computed using differential forms

In mathematics, de Rham cohomology is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapted to computation and the concrete representation of cohomology classes. It is a cohomology theory based on the existence of differential forms with prescribed properties.

Noncommutative geometry (NCG) is a branch of mathematics concerned with a geometric approach to noncommutative algebras, and with the construction of spaces that are locally presented by noncommutative algebras of functions. A noncommutative algebra is an associative algebra in which the multiplication is not commutative, that is, for which does not always equal ; or more generally an algebraic structure in which one of the principal binary operations is not commutative; one also allows additional structures, e.g. topology or norm, to be possibly carried by the noncommutative algebra of functions.

<span class="mw-page-title-main">Pierre Deligne</span> Belgian mathematician

Pierre René, Viscount Deligne is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoord Prize, and 1978 Fields Medal.

Lists of mathematics topics

Lists of mathematics topics cover a variety of topics related to mathematics. Some of these lists link to hundreds of articles; some link only to a few. The template to the right includes links to alphabetical lists of all mathematical articles. This article brings together the same content organized in a manner better suited for browsing. Lists cover aspects of basic and advanced mathematics, methodology, mathematical statements, integrals, general concepts, mathematical objects, and reference tables. They also cover equations named after people, societies, mathematicians, journals, and meta-lists.

Sergei Petrovich Novikov is a Soviet and Russian mathematician, noted for work in both algebraic topology and soliton theory. In 1970, he won the Fields Medal.

<span class="mw-page-title-main">Yuri Manin</span> Russian mathematician

Yuri Ivanovich Manin is a Russian mathematician, known for work in algebraic geometry and diophantine geometry, and many expository works ranging from mathematical logic to theoretical physics. Moreover, Manin was one of the first to propose the idea of a quantum computer in 1980 with his book Computable and Uncomputable.

In mathematics, the derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, geometry, etc.

In mathematics, integrability is a property of certain dynamical systems. While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first integrals, such that its behaviour has far fewer degrees of freedom than the dimensionality of its phase space; that is, its evolution is restricted to a submanifold within its phase space.

In mathematics, the Kodaira vanishing theorem is a basic result of complex manifold theory and complex algebraic geometry, describing general conditions under which sheaf cohomology groups with indices q > 0 are automatically zero. The implications for the group with index q = 0 is usually that its dimension — the number of independent global sections — coincides with a holomorphic Euler characteristic that can be computed using the Hirzebruch–Riemann–Roch theorem.

The Mathematics Subject Classification (MSC) is an alphanumerical classification scheme collaboratively produced by staff of, and based on the coverage of, the two major mathematical reviewing databases, Mathematical Reviews and Zentralblatt MATH. The MSC is used by many mathematics journals, which ask authors of research papers and expository articles to list subject codes from the Mathematics Subject Classification in their papers. The current version is MSC2020.

In mathematics the differential calculus over commutative algebras is a part of commutative algebra based on the observation that most concepts known from classical differential calculus can be formulated in purely algebraic terms. Instances of this are:

  1. The whole topological information of a smooth manifold is encoded in the algebraic properties of its -algebra of smooth functions as in the Banach–Stone theorem.
  2. Vector bundles over correspond to projective finitely generated modules over via the functor which associates to a vector bundle its module of sections.
  3. Vector fields on are naturally identified with derivations of the algebra .
  4. More generally, a linear differential operator of order k, sending sections of a vector bundle to sections of another bundle is seen to be an -linear map between the associated modules, such that for any elements :

In mathematics, a diffiety is a geometrical object which plays the same role in the modern theory of partial differential equations that algebraic varieties play for algebraic equations, that is, to encode the space of solutions in a more conceptual way. It was introduced in 1984 by Alexandre Mikhailovich Vinogradov, who coined this word as portmanteau from differential variety.

In mathematics, the Lagrangian theory on fiber bundles is globally formulated in algebraic terms of the variational bicomplex, without appealing to the calculus of variations. For instance, this is the case of classical field theory on fiber bundles.

In algebraic geometry, graded manifolds are extensions of the concept of manifolds based on ideas coming from supersymmetry and supercommutative algebra. Both graded manifolds and supermanifolds are phrased in terms of sheaves of graded commutative algebras. However, graded manifolds are characterized by sheaves on smooth manifolds, while supermanifolds are constructed by gluing of sheaves of supervector spaces.

Mathematics is a broad subject that is commonly divided in many areas that may be defined by their objects of study, by the used methods, or by both. For example, analytic number theory is a subarea of number theory devoted to the use of methods of analysis for the study of natural numbers.

<span class="mw-page-title-main">Alexander Varchenko</span>

Alexander Nikolaevich Varchenko is a Soviet and Russian mathematician working in geometry, topology, combinatorics and mathematical physics.

<span class="mw-page-title-main">Alexandre Mikhailovich Vinogradov</span> Russian-Italian mathematician (1938–2019)

Alexandre Mikhailovich Vinogradov was a Russian and Italian mathematician. He made important contributions to the areas of differential calculus over commutative algebras, the algebraic theory of differential operators, homological algebra, differential geometry and algebraic topology, mechanics and mathematical physics, the geometrical theory of nonlinear partial differential equations and secondary calculus.

References