Tangent bundle

Last updated

Informally, the tangent bundle of a manifold (which in this case is a circle) is obtained by considering all the tangent spaces (top), and joining them together in a smooth and non-overlapping manner (bottom). Tangent bundle.svg
Informally, the tangent bundle of a manifold (which in this case is a circle) is obtained by considering all the tangent spaces (top), and joining them together in a smooth and non-overlapping manner (bottom).

A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold is a manifold which assembles all the tangent vectors in . As a set, it is given by the disjoint union [note 1] of the tangent spaces of . That is,

Contents

where denotes the tangent space to at the point . So, an element of can be thought of as a pair , where is a point in and is a tangent vector to at .

There is a natural projection

defined by . This projection maps each element of the tangent space to the single point .

The tangent bundle comes equipped with a natural topology (described in a section below). With this topology, the tangent bundle to a manifold is the prototypical example of a vector bundle (which is a fiber bundle whose fibers are vector spaces). A section of is a vector field on , and the dual bundle to is the cotangent bundle, which is the disjoint union of the cotangent spaces of . By definition, a manifold is parallelizable if and only if the tangent bundle is trivial. By definition, a manifold is framed if and only if the tangent bundle is stably trivial, meaning that for some trivial bundle the Whitney sum is trivial. For example, the n-dimensional sphere Sn is framed for all n, but parallelizable only for n = 1, 3, 7 (by results of Bott-Milnor and Kervaire).

Role

One of the main roles of the tangent bundle is to provide a domain and range for the derivative of a smooth function. Namely, if is a smooth function, with and smooth manifolds, its derivative is a smooth function .

Topology and smooth structure

The tangent bundle comes equipped with a natural topology (not the disjoint union topology) and smooth structure so as to make it into a manifold in its own right. The dimension of is twice the dimension of .

Each tangent space of an n-dimensional manifold is an n-dimensional vector space. If is an open contractible subset of , then there is a diffeomorphism which restricts to a linear isomorphism from each tangent space to . As a manifold, however, is not always diffeomorphic to the product manifold . When it is of the form , then the tangent bundle is said to be trivial. Trivial tangent bundles usually occur for manifolds equipped with a 'compatible group structure'; for instance, in the case where the manifold is a Lie group. The tangent bundle of the unit circle is trivial because it is a Lie group (under multiplication and its natural differential structure). It is not true however that all spaces with trivial tangent bundles are Lie groups; manifolds which have a trivial tangent bundle are called parallelizable. Just as manifolds are locally modeled on Euclidean space, tangent bundles are locally modeled on , where is an open subset of Euclidean space.

If M is a smooth n-dimensional manifold, then it comes equipped with an atlas of charts , where is an open set in and

is a diffeomorphism. These local coordinates on give rise to an isomorphism for all . We may then define a map

by

We use these maps to define the topology and smooth structure on . A subset of is open if and only if

is open in for each These maps are homeomorphisms between open subsets of and and therefore serve as charts for the smooth structure on . The transition functions on chart overlaps are induced by the Jacobian matrices of the associated coordinate transformation and are therefore smooth maps between open subsets of .

The tangent bundle is an example of a more general construction called a vector bundle (which is itself a specific kind of fiber bundle). Explicitly, the tangent bundle to an -dimensional manifold may be defined as a rank vector bundle over whose transition functions are given by the Jacobian of the associated coordinate transformations.

Examples

The simplest example is that of . In this case the tangent bundle is trivial: each is canonically isomorphic to via the map which subtracts , giving a diffeomorphism .

Another simple example is the unit circle, (see picture above). The tangent bundle of the circle is also trivial and isomorphic to . Geometrically, this is a cylinder of infinite height.

The only tangent bundles that can be readily visualized are those of the real line and the unit circle , both of which are trivial. For 2-dimensional manifolds the tangent bundle is 4-dimensional and hence difficult to visualize.

A simple example of a nontrivial tangent bundle is that of the unit sphere : this tangent bundle is nontrivial as a consequence of the hairy ball theorem. Therefore, the sphere is not parallelizable.

Vector fields

A smooth assignment of a tangent vector to each point of a manifold is called a vector field . Specifically, a vector field on a manifold is a smooth map

such that with for every . In the language of fiber bundles, such a map is called a section . A vector field on is therefore a section of the tangent bundle of .

The set of all vector fields on is denoted by . Vector fields can be added together pointwise

and multiplied by smooth functions on M

to get other vector fields. The set of all vector fields then takes on the structure of a module over the commutative algebra of smooth functions on M, denoted .

A local vector field on is a local section of the tangent bundle. That is, a local vector field is defined only on some open set and assigns to each point of a vector in the associated tangent space. The set of local vector fields on forms a structure known as a sheaf of real vector spaces on .

The above construction applies equally well to the cotangent bundle – the differential 1-forms on are precisely the sections of the cotangent bundle , that associate to each point a 1-covector , which map tangent vectors to real numbers: . Equivalently, a differential 1-form maps a smooth vector field to a smooth function .

Higher-order tangent bundles

Since the tangent bundle is itself a smooth manifold, the second-order tangent bundle can be defined via repeated application of the tangent bundle construction:

In general, the th order tangent bundle can be defined recursively as .

A smooth map has an induced derivative, for which the tangent bundle is the appropriate domain and range . Similarly, higher-order tangent bundles provide the domain and range for higher-order derivatives .

A distinct but related construction are the jet bundles on a manifold, which are bundles consisting of jets.

Canonical vector field on tangent bundle

On every tangent bundle , considered as a manifold itself, one can define a canonical vector field as the diagonal map on the tangent space at each point. This is possible because the tangent space of a vector space W is naturally a product, since the vector space itself is flat, and thus has a natural diagonal map given by under this product structure. Applying this product structure to the tangent space at each point and globalizing yields the canonical vector field. Informally, although the manifold is curved, each tangent space at a point , , is flat, so the tangent bundle manifold is locally a product of a curved and a flat Thus the tangent bundle of the tangent bundle is locally (using for "choice of coordinates" and for "natural identification"):

and the map is the projection onto the first coordinates:

Splitting the first map via the zero section and the second map by the diagonal yields the canonical vector field.

If are local coordinates for , the vector field has the expression

More concisely, – the first pair of coordinates do not change because it is the section of a bundle and these are just the point in the base space: the last pair of coordinates are the section itself. This expression for the vector field depends only on , not on , as only the tangent directions can be naturally identified.

Alternatively, consider the scalar multiplication function:

The derivative of this function with respect to the variable at time is a function , which is an alternative description of the canonical vector field.

The existence of such a vector field on is analogous to the canonical one-form on the cotangent bundle. Sometimes is also called the Liouville vector field, or radial vector field. Using one can characterize the tangent bundle. Essentially, can be characterized using 4 axioms, and if a manifold has a vector field satisfying these axioms, then the manifold is a tangent bundle and the vector field is the canonical vector field on it. See for example, De León et al.

Lifts

There are various ways to lift objects on into objects on . For example, if is a curve in , then (the tangent of ) is a curve in . In contrast, without further assumptions on (say, a Riemannian metric), there is no similar lift into the cotangent bundle.

The vertical lift of a function is the function defined by , where is the canonical projection.

See also

Notes

  1. 1 2 The disjoint union ensures that for any two points x1 and x2 of manifold M the tangent spaces T1 and T2 have no common vector. This is graphically illustrated in the accompanying picture for tangent bundle of circle S1, see Examples section: all tangents to a circle lie in the plane of the circle. In order to make them disjoint it is necessary to align them in a plane perpendicular to the plane of the circle.

Related Research Articles

In differential geometry, the cotangent space is a vector space associated with a point on a smooth manifold ; one can define a cotangent space for every point on a smooth manifold. Typically, the cotangent space, is defined as the dual space of the tangent space at , , although there are more direct definitions. The elements of the cotangent space are called cotangent vectors or tangent covectors.

In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.

In mathematics, the tangent space of a manifold is a generalization of tangent lines to curves in two-dimensional space and tangent planes to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be viewed as the space of possible velocities for a particle moving on the manifold.

In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This may be generalized to categories with more structure than smooth manifolds, such as complex manifolds, or algebraic varieties or schemes. In the smooth case, any Riemannian metric or symplectic form gives an isomorphism between the cotangent bundle and the tangent bundle, but they are not in general isomorphic in other categories.

<span class="mw-page-title-main">Vector bundle</span> Mathematical parametrization of vector spaces by another space

In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space : to every point of the space we associate a vector space in such a way that these vector spaces fit together to form another space of the same kind as , which is then called a vector bundle over .

In mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra.

In differential geometry, a one-form on a differentiable manifold is a smooth section of the cotangent bundle. Equivalently, a one-form on a manifold is a smooth mapping of the total space of the tangent bundle of to whose restriction to each fibre is a linear functional on the tangent space. Symbolically,

<span class="mw-page-title-main">Foliation</span> In mathematics, a type of equivalence relation on an n-manifold

In mathematics, a foliation is an equivalence relation on an n-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension p, modeled on the decomposition of the real coordinate space Rn into the cosets x + Rp of the standardly embedded subspace Rp. The equivalence classes are called the leaves of the foliation. If the manifold and/or the submanifolds are required to have a piecewise-linear, differentiable, or analytic structure then one defines piecewise-linear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class Cr it is usually understood that r ≥ 1. The number p is called the dimension of the foliation and q = np is called its codimension.

Let be a smooth map between smooth manifolds and . Then there is an associated linear map from the space of 1-forms on to the space of 1-forms on . This linear map is known as the pullback, and is frequently denoted by . More generally, any covariant tensor field – in particular any differential form – on may be pulled back to using .

This is a glossary of terms specific to differential geometry and differential topology. The following three glossaries are closely related:

In differential geometry, a field in mathematics, a Poisson manifold is a smooth manifold endowed with a Poisson structure. The notion of Poisson manifold generalises that of symplectic manifold, which in turn generalises the phase space from Hamiltonian mechanics.

<span class="mw-page-title-main">Pushforward (differential)</span> Linear approximation of smooth maps on tangent spaces

In differential geometry, pushforward is a linear approximation of smooth maps on tangent spaces. Suppose that is a smooth map between smooth manifolds; then the differential of at a point , denoted , is, in some sense, the best linear approximation of near . It can be viewed as a generalization of the total derivative of ordinary calculus. Explicitly, the differential is a linear map from the tangent space of at to the tangent space of at , . Hence it can be used to push tangent vectors on forward to tangent vectors on . The differential of a map is also called, by various authors, the derivative or total derivative of .

<span class="mw-page-title-main">Differentiable manifold</span> Manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

In differential geometry, a field of mathematics, a normal bundle is a particular kind of vector bundle, complementary to the tangent bundle, and coming from an embedding.

In mathematics, a vector-valued differential form on a manifold M is a differential form on M with values in a vector space V. More generally, it is a differential form with values in some vector bundle E over M. Ordinary differential forms can be viewed as R-valued differential forms.

In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : EX is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle.

In mathematics, particularly differential topology, the double tangent bundle or the second tangent bundle refers to the tangent bundle (TTM,πTTM,TM) of the total space TM of the tangent bundle (TM,πTM,M) of a smooth manifold M . A note on notation: in this article, we denote projection maps by their domains, e.g., πTTM : TTMTM. Some authors index these maps by their ranges instead, so for them, that map would be written πTM.

In mathematics, and especially complex geometry, the holomorphic tangent bundle of a complex manifold is the holomorphic analogue of the tangent bundle of a smooth manifold. The fibre of the holomorphic tangent bundle over a point is the holomorphic tangent space, which is the tangent space of the underlying smooth manifold, given the structure of a complex vector space via the almost complex structure of the complex manifold .

In mathematics, the Kodaira–Spencer map, introduced by Kunihiko Kodaira and Donald C. Spencer, is a map associated to a deformation of a scheme or complex manifold X, taking a tangent space of a point of the deformation space to the first cohomology group of the sheaf of vector fields on X.

In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.

References