General relativity |
---|

In differential geometry, a **pseudo-Riemannian manifold**,^{ [1] }^{ [2] } also called a **semi-Riemannian manifold**, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed.

- Introduction
- Manifolds
- Tangent spaces and metric tensors
- Metric signatures
- Definition
- Lorentzian manifold
- Applications in physics
- Properties of pseudo-Riemannian manifolds
- See also
- Notes
- References
- External links

Every tangent space of a pseudo-Riemannian manifold is a pseudo-Euclidean vector space.

A special case used in general relativity is a four-dimensional **Lorentzian manifold** for modeling spacetime, where tangent vectors can be classified as timelike, null, and spacelike.

In differential geometry, a differentiable manifold is a space which is locally similar to a Euclidean space. In an *n*-dimensional Euclidean space any point can be specified by *n* real numbers. These are called the coordinates of the point.

An *n*-dimensional differentiable manifold is a generalisation of *n*-dimensional Euclidean space. In a manifold it may only be possible to define coordinates *locally*. This is achieved by defining coordinate patches: subsets of the manifold which can be mapped into *n*-dimensional Euclidean space.

See * Manifold *, * Differentiable manifold *, * Coordinate patch * for more details.

Associated with each point in an -dimensional differentiable manifold is a tangent space (denoted ). This is an -dimensional vector space whose elements can be thought of as equivalence classes of curves passing through the point .

A metric tensor is a non-degenerate, smooth, symmetric, bilinear map that assigns a real number to pairs of tangent vectors at each tangent space of the manifold. Denoting the metric tensor by we can express this as

The map is symmetric and bilinear so if are tangent vectors at a point to the manifold then we have

for any real number .

That is non-degenerate means there are no non-zero such that for all .

Given a metric tensor *g* on an *n*-dimensional real manifold, the quadratic form *q*(*x*) = *g*(*x*, *x*) associated with the metric tensor applied to each vector of any orthogonal basis produces *n* real values. By Sylvester's law of inertia, the number of each positive, negative and zero values produced in this manner are invariants of the metric tensor, independent of the choice of orthogonal basis. The ** signature **(*p*, *q*, *r*) of the metric tensor gives these numbers, shown in the same order. A non-degenerate metric tensor has *r* = 0 and the signature may be denoted (*p*, *q*), where *p* + *q* = *n*.

A **pseudo-Riemannian manifold** is a differentiable manifold equipped with an everywhere non-degenerate, smooth, symmetric metric tensor .

Such a metric is called a **pseudo-Riemannian metric**. Applied to a vector field, the resulting scalar field value at any point of the manifold can be positive, negative or zero.

The signature of a pseudo-Riemannian metric is (*p*, *q*), where both *p* and *q* are non-negative. The non-degeneracy condition together with continuity implies that *p* and *q* remain unchanged throughout the manifold (assuming it is connected).

A **Lorentzian manifold** is an important special case of a pseudo-Riemannian manifold in which the signature of the metric is (1, *n*−1) (equivalently, (*n*−1, 1); see * Sign convention *). Such metrics are called **Lorentzian metrics**. They are named after the Dutch physicist Hendrik Lorentz.

After Riemannian manifolds, Lorentzian manifolds form the most important subclass of pseudo-Riemannian manifolds. They are important in applications of general relativity.

A principal premise of general relativity is that spacetime can be modeled as a 4-dimensional Lorentzian manifold of signature (3, 1) or, equivalently, (1, 3). Unlike Riemannian manifolds with positive-definite metrics, an indefinite signature allows tangent vectors to be classified into *timelike*, *null* or *spacelike*. With a signature of (*p*, 1) or (1, *q*), the manifold is also locally (and possibly globally) time-orientable (see * Causal structure *).

Just as Euclidean space can be thought of as the model Riemannian manifold, Minkowski space with the flat Minkowski metric is the model Lorentzian manifold. Likewise, the model space for a pseudo-Riemannian manifold of signature (`p`, `q`) is with the metric

Some basic theorems of Riemannian geometry can be generalized to the pseudo-Riemannian case. In particular, the fundamental theorem of Riemannian geometry is true of pseudo-Riemannian manifolds as well. This allows one to speak of the Levi-Civita connection on a pseudo-Riemannian manifold along with the associated curvature tensor. On the other hand, there are many theorems in Riemannian geometry which do not hold in the generalized case. For example, it is *not* true that every smooth manifold admits a pseudo-Riemannian metric of a given signature; there are certain topological obstructions. Furthermore, a submanifold does not always inherit the structure of a pseudo-Riemannian manifold; for example, the metric tensor becomes zero on any light-like curve. The Clifton–Pohl torus provides an example of a pseudo-Riemannian manifold that is compact but not complete, a combination of properties that the Hopf–Rinow theorem disallows for Riemannian manifolds.^{ [3] }

- ↑ Benn & Tucker (1987), p. 172.
- ↑ Bishop & Goldberg (1968), p. 208
- ↑ O'Neill (1983), p. 193.

**Differential geometry** is a mathematical discipline that uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra to study problems in geometry. The theory of plane and space curves and surfaces in the three-dimensional Euclidean space formed the basis for development of differential geometry during the 18th century and the 19th century.

**Euclidean space** is the fundamental space of classical geometry. Originally, it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any nonnegative integer dimension, including the three-dimensional space and the *Euclidean plane*. It was introduced by the Ancient Greek mathematician Euclid of Alexandria, and the qualifier *Euclidean* is used to distinguish it from other spaces that were later discovered in physics and modern mathematics.

In the mathematical field of differential geometry, the **Riemann curvature tensor** or **Riemann–Christoffel tensor** is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measure the failure of second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is *flat*, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

In differential geometry, a **Riemannian manifold** or **Riemannian space**(*M*, *g*) is a real, smooth manifold *M* equipped with a positive-definite inner product *g*_{p} on the tangent space *T*_{p}*M* at each point *p*. A common convention is to take *g* to be smooth, which means that for any smooth coordinate chart (*U*, *x*) on *M*, the *n*^{2} functions

In the mathematical field of differential geometry, one definition of a **metric tensor** is a type of function which takes as input a pair of tangent vectors v and w at a point of a surface and produces a real number scalar *g*(*v*, *w*) in a way that generalizes many of the familiar properties of the dot product of vectors in Euclidean space. In the same way as a dot product, metric tensors are used to define the length of and angle between tangent vectors. Through integration, the metric tensor allows one to define and compute the length of curves on the manifold.

In mathematical physics, **Minkowski space** is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the inertial frame of reference in which they are recorded. Although initially developed by mathematician Hermann Minkowski for Maxwell's equations of electromagnetism, the mathematical structure of Minkowski spacetime was shown to be implied by the postulates of special relativity.

In Riemannian or pseudo Riemannian geometry, the **Levi-Civita connection** is the unique connection on the tangent bundle of a manifold that preserves the (pseudo-)Riemannian metric and is torsion-free.

In mathematics, an **isometry** is a distance-preserving transformation between metric spaces, usually assumed to be bijective.

In differential geometry, the **Ricci curvature tensor**, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

In Riemannian geometry, the **sectional curvature** is one of the ways to describe the curvature of Riemannian manifolds with dimension greater than 2. The sectional curvature *K*(σ_{p}) depends on a two-dimensional linear subspace σ_{p} of the tangent space at a point *p* of the manifold. It can be defined geometrically as the Gaussian curvature of the surface which has the plane σ_{p} as a tangent plane at *p*, obtained from geodesics which start at *p* in the directions of σ_{p}. The sectional curvature is a real-valued function on the 2-Grassmannian bundle over the manifold.

In mathematics, **conformal geometry** is the study of the set of angle-preserving (conformal) transformations on a space.

In mathematics, the **signature**(*v*, *p*, *r*) of a metric tensor *g* is the number of positive, negative and zero eigenvalues of the real symmetric matrix *g*_{ab} of the metric tensor with respect to a basis. In relativistic physics, the *v* represents the time or virtual dimension, and the *p* for the space and physical dimension. Alternatively, it can be defined as the dimensions of a maximal positive and null subspace. By Sylvester's law of inertia these numbers do not depend on the choice of basis. The signature thus classifies the metric up to a choice of basis. The signature is often denoted by a pair of integers (*v*, *p*) implying *r*= 0, or as an explicit list of signs of eigenvalues such as (+, −, −, −) or (−, +, +, +) for the signatures (1, 3, 0) and (3, 1, 0), respectively.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

In differential geometry and mathematical physics, an **Einstein manifold** is a Riemannian or pseudo-Riemannian differentiable manifold whose Ricci tensor is proportional to the metric. They are named after Albert Einstein because this condition is equivalent to saying that the metric is a solution of the vacuum Einstein field equations, although both the dimension and the signature of the metric can be arbitrary, thus not being restricted to the four-dimensional Lorentzian manifolds usually studied in general relativity. Einstein manifolds in four Euclidean dimensions are studied as gravitational instantons.

In geometry, the **line element** or **length element** can be informally thought of as a line segment associated with an infinitesimal displacement vector in a metric space. The length of the line element, which may be thought of as a differential arc length, is a function of the metric tensor and is denoted by *ds*

In mathematics, a **metric** or **distance function** is a function that gives a distance between each pair of point elements of a set. A set with a metric is called a metric space. A metric induces a topology on a set, but not all topologies can be generated by a metric. A topological space whose topology can be described by a metric is called metrizable.

In differential geometry, the **Laplace–Beltrami operator** is a generalization of the Laplace operator to functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. It is named after Pierre-Simon Laplace and Eugenio Beltrami.

In mathematics and theoretical physics, a **pseudo-Euclidean space** is a finite-dimensional real *n*-space together with a non-degenerate quadratic form *q*. Such a quadratic form can, given a suitable choice of basis (*e*_{1}, …, *e*_{n}), be applied to a vector *x* = *x*_{1}*e*_{1} + ⋯ + *x*_{n}*e*_{n}, giving

In mathematical physics, the **causal structure** of a Lorentzian manifold describes the causal relationships between points in the manifold.

In gravitation theory, a **world manifold** endowed with some Lorentzian pseudo-Riemannian metric and an associated space-time structure is a space-time. Gravitation theory is formulated as classical field theory on natural bundles over a world manifold.

- Benn, I.M.; Tucker, R.W. (1987),
*An introduction to Spinors and Geometry with Applications in Physics*(First published 1987 ed.), Adam Hilger, ISBN 0-85274-169-3 - Bishop, Richard L.; Goldberg, Samuel I. (1968),
*Tensor Analysis on Manifolds*(First Dover 1980 ed.), The Macmillan Company, ISBN 0-486-64039-6 - Chen, Bang-Yen (2011),
*Pseudo-Riemannian Geometry, [delta]-invariants and Applications*, World Scientific Publisher, ISBN 978-981-4329-63-7 - O'Neill, Barrett (1983),
*Semi-Riemannian Geometry With Applications to Relativity*, Pure and Applied Mathematics,**103**, Academic Press, ISBN 9780080570570 - Vrănceanu, G.; Roşca, R. (1976),
*Introduction to Relativity and Pseudo-Riemannian Geometry*, Bucarest: Editura Academiei Republicii Socialiste România.

- Media related to Lorentzian manifolds at Wikimedia Commons

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.