Gravitational time dilation

Last updated

Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational potential increases (the clock moving away from the source of gravitation). Albert Einstein originally predicted this in his theory of relativity, and it has since been confirmed by tests of general relativity. [1]

Contents

This effect has been demonstrated by noting that atomic clocks at differing altitudes (and thus different gravitational potential) will eventually show different times. The effects detected in such Earth-bound experiments are extremely small, with differences being measured in nanoseconds. Relative to Earth's age in billions of years, Earth's core is in effect 2.5 years younger than its surface. [2] Demonstrating larger effects would require measurements at greater distances from the Earth, or a larger gravitational source.

Gravitational time dilation was first described by Albert Einstein in 1907 [3] as a consequence of special relativity in accelerated frames of reference. In general relativity, it is considered to be a difference in the passage of proper time at different positions as described by a metric tensor of spacetime. The existence of gravitational time dilation was first confirmed directly by the Pound–Rebka experiment in 1959, and later refined by Gravity Probe A and other experiments.

Gravitational time dilation is closely related to gravitational redshift, [4] in which the closer a body emitting light of constant frequency is to a gravitating body, the more its time is slowed by gravitational time dilation, and the lower (more "redshifted") would seem to be the frequency of the emitted light, as measured by a fixed observer.

Definition

Clocks that are far from massive bodies (or at higher gravitational potentials) run more quickly, and clocks close to massive bodies (or at lower gravitational potentials) run more slowly. For example, considered over the total time-span of Earth (4.6 billion years), a clock set in a geostationary position at an altitude of 9,000 meters above sea level, such as perhaps at the top of Mount Everest (prominence 8,848 m), would be about 39 hours ahead of a clock set at sea level. [5] [6] This is because gravitational time dilation is manifested in accelerated frames of reference or, by virtue of the equivalence principle, in the gravitational field of massive objects. [7]

According to general relativity, inertial mass and gravitational mass are the same, and all accelerated reference frames (such as a uniformly rotating reference frame with its proper time dilation) are physically equivalent to a gravitational field of the same strength. [8]

Consider a family of observers along a straight "vertical" line, each of whom experiences a distinct constant g-force directed along this line (e.g., a long accelerating spacecraft, [9] [10] a skyscraper, a shaft on a planet). Let be the dependence of g-force on "height", a coordinate along the aforementioned line. The equation with respect to a base observer at is

where is the total time dilation at a distant position , is the dependence of g-force on "height" , is the speed of light, and denotes exponentiation by e.

For simplicity, in a Rindler's family of observers in a flat spacetime, the dependence would be

with constant , which yields

.

On the other hand, when is nearly constant and is much smaller than , the linear "weak field" approximation can also be used.

See Ehrenfest paradox for application of the same formula to a rotating reference frame in flat spacetime.

Outside a non-rotating sphere

A common equation used to determine gravitational time dilation is derived from the Schwarzschild metric, which describes spacetime in the vicinity of a non-rotating massive spherically symmetric object. The equation is

where

To illustrate then, without accounting for the effects of rotation, proximity to Earth's gravitational well will cause a clock on the planet's surface to accumulate around 0.0219 fewer seconds over a period of one year than would a distant observer's clock. In comparison, a clock on the surface of the Sun will accumulate around 66.4 fewer seconds in one year.

Circular orbits

In the Schwarzschild metric, free-falling objects can be in circular orbits if the orbital radius is larger than (the radius of the photon sphere). The formula for a clock at rest is given above; the formula below gives the general relativistic time dilation for a clock in a circular orbit: [11] [12]

Both dilations are shown in the figure below.

Important features of gravitational time dilation

Experimental confirmation

Satellite clocks are slowed by their orbital speed, but accelerated by their distance out of Earth's gravitational well. Orbit times.svg
Satellite clocks are slowed by their orbital speed, but accelerated by their distance out of Earth's gravitational well.

Gravitational time dilation has been experimentally measured using atomic clocks on airplanes, such as the Hafele–Keating experiment. The clocks aboard the airplanes were slightly faster than clocks on the ground. The effect is significant enough that the Global Positioning System's artificial satellites need to have their clocks corrected. [13]

Additionally, time dilations due to height differences of less than one metre have been experimentally verified in the laboratory. [14]

Gravitational time dilation in the form of gravitational redshift has also been confirmed by the Pound–Rebka experiment and observations of the spectra of the white dwarf Sirius B.

Gravitational time dilation has been measured in experiments with time signals sent to and from the Viking 1 Mars lander. [15] [16]

See also

Related Research Articles

<span class="mw-page-title-main">Gravitational redshift</span> Shift of wavelength of a photon to longer wavelength

In physics and general relativity, gravitational redshift is the phenomenon that electromagnetic waves or photons travelling out of a gravitational well lose energy. This loss of energy corresponds to a decrease in the wave frequency and increase in the wavelength, known more generally as a redshift. The opposite effect, in which photons gain energy when travelling into a gravitational well, is known as a gravitational blueshift. The effect was first described by Einstein in 1907, eight years before his publication of the full theory of relativity.

<span class="mw-page-title-main">Special relativity</span> Theory of interwoven space and time by Albert Einstein

In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 treatment, the theory is presented as being based on just two postulates:

  1. The laws of physics are invariant (identical) in all inertial frames of reference.
  2. The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer.
<span class="mw-page-title-main">Spacetime</span> Mathematical model combining space and time

In physics, spacetime is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects such as how different observers perceive where and when events occur.

In physics, the twin paradox is a thought experiment in special relativity involving identical twins, one of whom makes a journey into space in a high-speed rocket and returns home to find that the twin who remained on Earth has aged more. This result appears puzzling because each twin sees the other twin as moving, and so, as a consequence of an incorrect and naive application of time dilation and the principle of relativity, each should paradoxically find the other to have aged less. However, this scenario can be resolved within the standard framework of special relativity: the travelling twin's trajectory involves two different inertial frames, one for the outbound journey and one for the inbound journey. Another way of looking at it is to realize the travelling twin is undergoing acceleration, which makes them a non-inertial observer. In both views there is no symmetry between the spacetime paths of the twins. Therefore, the twin paradox is not actually a paradox in the sense of a logical contradiction. There is still debate as to the resolution of the twin paradox.

In Einstein's theory of general relativity, the Schwarzschild metric is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero. The solution is a useful approximation for describing slowly rotating astronomical objects such as many stars and planets, including Earth and the Sun. It was found by Karl Schwarzschild in 1916.

Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them, or a difference in gravitational potential between their locations. When unspecified, "time dilation" usually refers to the effect due to velocity.

<span class="mw-page-title-main">Length contraction</span> Contraction of length in the direction of propagation in Minkowski space

Length contraction is the phenomenon that a moving object's length is measured to be shorter than its proper length, which is the length as measured in the object's own rest frame. It is also known as Lorentz contraction or Lorentz–FitzGerald contraction and is usually only noticeable at a substantial fraction of the speed of light. Length contraction is only in the direction in which the body is travelling. For standard objects, this effect is negligible at everyday speeds, and can be ignored for all regular purposes, only becoming significant as the object approaches the speed of light relative to the observer.

<span class="mw-page-title-main">Relativistic Doppler effect</span> Scientific phenomenon

The relativistic Doppler effect is the change in frequency, wavelength and amplitude of light, caused by the relative motion of the source and the observer, when taking into account effects described by the special theory of relativity.

The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

<span class="mw-page-title-main">Proper time</span> Elapsed time between two events as measured by a clock that passes through both events

In relativity, proper time along a timelike world line is defined as the time as measured by a clock following that line. The proper time interval between two events on a world line is the change in proper time, which is independent of coordinates, and is a Lorentz scalar. The interval is the quantity of interest, since proper time itself is fixed only up to an arbitrary additive constant, namely the setting of the clock at some event along the world line.

The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic Solar System tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present. The time delay is caused by time dilation, which increases the time it takes light to travel a given distance from the perspective of an outside observer. In a 1964 article entitled Fourth Test of General Relativity, Irwin Shapiro wrote:

Because, according to the general theory, the speed of a light wave depends on the strength of the gravitational potential along its path, these time delays should thereby be increased by almost 2×10−4 sec when the radar pulses pass near the sun. Such a change, equivalent to 60 km in distance, could now be measured over the required path length to within about 5 to 10% with presently obtainable equipment.

Rindler coordinates are a coordinate system used in the context of special relativity to describe the hyperbolic acceleration of a uniformly accelerating reference frame in flat spacetime. In relativistic physics the coordinates of a hyperbolically accelerated reference frame constitute an important and useful coordinate chart representing part of flat Minkowski spacetime. In special relativity, a uniformly accelerating particle undergoes hyperbolic motion, for which a uniformly accelerating frame of reference in which it is at rest can be chosen as its proper reference frame. The phenomena in this hyperbolically accelerated frame can be compared to effects arising in a homogeneous gravitational field. For general overview of accelerations in flat spacetime, see Acceleration and Proper reference frame.

<span class="mw-page-title-main">Ives–Stilwell experiment</span>

The Ives–Stilwell experiment tested the contribution of relativistic time dilation to the Doppler shift of light. The result was in agreement with the formula for the transverse Doppler effect and was the first direct, quantitative confirmation of the time dilation factor. Since then many Ives–Stilwell type experiments have been performed with increased precision. Together with the Michelson–Morley and Kennedy–Thorndike experiments it forms one of the fundamental tests of special relativity theory. Other tests confirming the relativistic Doppler effect are the Mössbauer rotor experiment and modern Ives–Stilwell experiments.

<span class="mw-page-title-main">Proper acceleration</span> Physical acceleration experienced by an object

In relativity theory, proper acceleration is the physical acceleration experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at rest relative to the object being measured. Gravitation therefore does not cause proper acceleration, because the same gravity acts equally on the inertial observer. As a consequence, all inertial observers always have a proper acceleration of zero.

Gullstrand–Painlevé coordinates are a particular set of coordinates for the Schwarzschild metric – a solution to the Einstein field equations which describes a black hole. The ingoing coordinates are such that the time coordinate follows the proper time of a free-falling observer who starts from far away at zero velocity, and the spatial slices are flat. There is no coordinate singularity at the Schwarzschild radius. The outgoing ones are simply the time reverse of ingoing coordinates.

The two-body problem in general relativity is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun. Solutions are also used to describe the motion of binary stars around each other, and estimate their gradual loss of energy through gravitational radiation.

Lemaître coordinates are a particular set of coordinates for the Schwarzschild metric—a spherically symmetric solution to the Einstein field equations in vacuum—introduced by Georges Lemaître in 1932. Changing from Schwarzschild to Lemaître coordinates removes the coordinate singularity at the Schwarzschild radius.

Test theories of special relativity give a mathematical framework for analyzing results of experiments to verify special relativity.

<span class="mw-page-title-main">Time in physics</span> Fundamental quantity in physics

In physics, time is defined by its measurement: time is what a clock reads. In classical, non-relativistic physics, it is a scalar quantity and, like length, mass, and charge, is usually described as a fundamental quantity. Time can be combined mathematically with other physical quantities to derive other concepts such as motion, kinetic energy and time-dependent fields. Timekeeping is a complex of technological and scientific issues, and part of the foundation of recordkeeping.

In Einstein's theory of general relativity, the interior Schwarzschild metric is an exact solution for the gravitational field in the interior of a non-rotating spherical body which consists of an incompressible fluid and has zero pressure at the surface. This is a static solution, meaning that it does not change over time. It was discovered by Karl Schwarzschild in 1916, who earlier had found the exterior Schwarzschild metric.

References

  1. Einstein, A. (February 2004). Relativity : the Special and General Theory by Albert Einstein. Project Gutenberg.
  2. Uggerhøj, U I; Mikkelsen, R E; Faye, J (2016). "The young centre of the Earth". European Journal of Physics. 37 (3): 035602. arXiv: 1604.05507 . Bibcode:2016EJPh...37c5602U. doi:10.1088/0143-0807/37/3/035602. S2CID   118454696.
  3. A. Einstein, "Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen", Jahrbuch der Radioaktivität und Elektronik 4, 411–462 (1907); English translation, in "On the relativity principle and the conclusions drawn from it", in "The Collected Papers", v.2, 433–484 (1989); also in H M Schwartz, "Einstein's comprehensive 1907 essay on relativity, part I", American Journal of Physics vol.45, no.6 (1977) pp.512–517; Part II in American Journal of Physics vol.45 no.9 (1977), pp.811–817; Part III in American Journal of Physics vol.45 no.10 (1977), pp.899–902, see parts I, II and III.
  4. Cheng, T.P. (2010). Relativity, Gravitation and Cosmology: A Basic Introduction. Oxford Master Series in Physics. OUP Oxford. p. 72. ISBN   978-0-19-957363-9 . Retrieved 2022-11-07.
  5. Hassani, Sadri (2011). From Atoms to Galaxies: A Conceptual Physics Approach to Scientific Awareness. CRC Press. p. 433. ISBN   978-1-4398-0850-4. Extract of page 433
  6. Topper, David (2012). How Einstein Created Relativity out of Physics and Astronomy (illustrated ed.). Springer Science & Business Media. p. 118. ISBN   978-1-4614-4781-8. Extract of page 118
  7. John A. Auping, Proceedings of the International Conference on Two Cosmological Models, Plaza y Valdes, ISBN   9786074025309
  8. Johan F Prins, On Einstein's Non-Simultaneity, Length-Contraction and Time-Dilation
  9. Kogut, John B. (2012). Introduction to Relativity: For Physicists and Astronomers (illustrated ed.). Academic Press. p. 112. ISBN   978-0-08-092408-3.
  10. Bennett, Jeffrey (2014). What Is Relativity?: An Intuitive Introduction to Einstein's Ideas, and Why They Matter (illustrated ed.). Columbia University Press. p. 120. ISBN   978-0-231-53703-2. Extract of page 120
  11. Keeton, Keeton (2014). Principles of Astrophysics: Using Gravity and Stellar Physics to Explore the Cosmos (illustrated ed.). Springer. p. 208. ISBN   978-1-4614-9236-8. Extract of page 208
  12. Taylor, Edwin F.; Wheeler, John Archibald (2000). Exploring Black Holes . Addison Wesley Longman. p.  8-22. ISBN   978-0-201-38423-9.
  13. Richard Wolfson (2003). Simply Einstein. W W Norton & Co. p. 216. ISBN   978-0-393-05154-4.
  14. C. W. Chou, D. B. Hume, T. Rosenband, D. J. Wineland (24 September 2010), "Optical clocks and relativity", Science, 329(5999): 1630–1633;
  15. Shapiro, I. I.; Reasenberg, R. D. (30 September 1977). "The Viking Relativity Experiment". Journal of Geophysical Research. 82 (28). AGU: 4329–4334. Bibcode:1977JGR....82.4329S. doi:10.1029/JS082i028p04329 . Retrieved 6 February 2021.
  16. Thornton, Stephen T.; Rex, Andrew (2006). Modern Physics for Scientists and Engineers (3rd, illustrated ed.). Thomson, Brooks/Cole. p. 552. ISBN   978-0-534-41781-9.

Further reading