Postulates of special relativity

Last updated

In physics, Albert Einstein derived the theory of special relativity in 1905 [1] from principle now called the postulates of special relativity. Einstein's formulation is said to only require two postulates, though his derivation implies a few more assumptions.

Contents

The idea that special relativity depended only on two postulates, both of which seemed to be follow from the theory and experiment of the day, was one of the most compelling arguments for the correctness of the theory (Einstein 1912: "This theory is correct to the extent to which the two principles upon which it is based are correct. Since these seem to be correct to a great extent, ...") [2]

Postulates of special relativity

1. First postulate (principle of relativity)

The laws of physics take the same form in all inertial frames of reference.

2. Second postulate (invariance of c )

As measured in any inertial frame of reference, light is always propagated in empty space with a definite velocity c that is independent of the state of motion of the emitting body. Or: the speed of light in free space has the same value c in all inertial frames of reference.

The two-postulate basis for special relativity is the one historically used by Einstein, and it is sometimes the starting point today. As Einstein himself later acknowledged, the derivation of the Lorentz transformation tacitly makes use of some additional assumptions, including spatial homogeneity, isotropy, and memorylessness. [3] Also Hermann Minkowski implicitly used both postulates when he introduced the Minkowski space formulation, even though he showed that c can be seen as a space-time constant, and the identification with the speed of light is derived from optics. [4]

Alternative derivations of special relativity

Historically, Hendrik Lorentz and Henri Poincaré (1892–1905) derived the Lorentz transformation from Maxwell's equations, which served to explain the negative result of all aether drift measurements. By that the luminiferous aether becomes undetectable in agreement with what Poincaré called the principle of relativity (see History of Lorentz transformations and Lorentz ether theory). A more modern example of deriving the Lorentz transformation from electrodynamics (without using the historical aether concept at all), was given by Richard Feynman. [5]

George Francis FitzGerald already made an argument similar to Einstein's in 1889, in response to the Michelson-Morley experiment seeming to show both postulates to be true. He wrote that a length contraction is "almost the only hypothesis that can reconcile" the apparent contradictions. Lorentz independently came to similar conclusions, and later wrote "the chief difference being that Einstein simply postulates what we have deduced".

Following these derivations, many alternative derivations have been proposed, based on various sets of assumptions. It has often been argued (such as by Vladimir Ignatowski in 1910, [6] [7] [8] or Philipp Frank and Hermann Rothe in 1911, [9] [10] and many others in subsequent years [11] ) that a formula equivalent to the Lorentz transformation, up to a nonnegative free parameter, follows from just the relativity postulate itself, without first postulating the universal light speed. [12] These formulations rely on the aforementioned various assumptions such as isotropy. The numerical value of the parameter in these transformations can then be determined by experiment, just as the numerical values of the parameter pair c and the Vacuum permittivity are left to be determined by experiment even when using Einstein's original postulates. Experiment rules out the validity of the Galilean transformations. When the numerical values in both Einstein's and other approaches have been found then these different approaches result in the same theory.[ citation needed ]

Insufficiency of the two standard postulates

Einstein's 1905 derivation is not complete. A break in Einstein's logic occurs where, after having established "the law of the constancy of the speed of light" for empty space, he invokes the law in situations where space is no longer empty. [1] For the derivation to apply to physical objects requires an additional postulate or "bridging hypothesis", that the geometry derived for empty space also applies when a space is populated. This would be equivalent to stating that we know that the introduction of matter into a region, and its relative motion, have no effect on lightbeam geometry.

Such a statement would be problematic, as Einstein rejected the notion that a process such as light-propagation could be immune to other factors (1914: "There can be no doubt that this principle is of far-reaching significance; and yet, I cannot believe in its exact validity. It seems to me unbelievable that the course of any process (e.g., that of the propagation of light in a vacuum) could be conceived of as independent of all other events in the world.") [13]

Including this "bridge" as an explicit third postulate might also have damaged the theory's credibility, as refractive index and the Fizeau effect would have suggested that the presence and behaviour of matter does seem to influence light-propagation, contra the theory. If this bridging hypothesis had been stated as a third postulate, it could have been claimed that the third postulate (and therefore the theory) were falsified by the experimental evidence.

The 1905 system as "null theory"

Without a "bridging hypothesis" as a third postulate, the 1905 derivation is open to the criticism that its derived relationships may only apply in vacuo , that is, in the absence of matter.

The controversial suggestion that the 1905 theory, derived by assuming empty space, might only apply to empty space, appears in Edwin F. Taylor and John Archibald Wheeler's book "Spacetime Physics" (Box 3-1: "The Principle of Relativity Rests on Emptiness"). [14]

A similar suggestion that the reduction of GR geometry to SR's flat spacetime over small regions may be "unphysical" (because flat pointlike regions cannot contain matter capable of acting as physical observers) was acknowledged but rejected by Einstein in 1914 ("The equations of the new theory of relativity reduce to those of the original theory in the special case where the gμν can be considered constant ... the sole objection that can be raised against the theory is that the equations we have set up might, perhaps, be void of any physical content. But no one is likely to think in earnest that this objection is justified in the present case"). [13]

Einstein revisited the problem in 1919 ("It is by no means settled a priori that a limiting transition of this kind has any possible meaning. For if gravitational fields do play an essential part in the structure of the particles of matter, the transition to the limiting case of constant gμν would, for them, lose its justification, for indeed, with constant gμν there could not be any particles of matter.") [15]

A further argument for unphysicality can be gleaned from Einstein's solution to the "hole problem" under general relativity, in which Einstein rejects the physicality of coordinate-system relationships in truly empty space. [16]

Alternative relativistic models

Einstein's special theory is not the only theory that combines a form of lightspeed constancy with the relativity principle. A theory along the lines of that proposed by Heinrich Hertz (in 1890) [17] allows for light to be fully dragged by all objects, giving local c-constancy for all physical observers. The logical possibility of a Hertzian theory shows that Einstein's two standard postulates (without the bridging hypothesis) are not sufficient to allow us to arrive uniquely at the solution of special relativity (although special relativity might be considered the most minimalist solution).

Einstein agreed that the Hertz theory was logically consistent ("It is on the basis of this hypothesis that Hertz developed an electrodynamics of moving bodies that is free of contradictions."), [18] but dismissed it on the grounds of a poor agreement with the Fizeau result, leaving special relativity as the only remaining option. Given that SR was similarly unable to reproduce the Fizeau result without introducing additional auxiliary rules (to address the different behaviour of light in a particulate medium), this was perhaps not a fair comparison.

Mathematical formulation of the postulates

In the rigorous mathematical formulation of special relativity, we suppose that the universe exists on a four-dimensional spacetime M. Individual points in spacetime are known as events; physical objects in spacetime are described by worldlines (if the object is a point particle) or worldsheets (if the object is larger than a point). The worldline or worldsheet only describes the motion of the object; the object may also have several other physical characteristics such as energy-momentum, mass, charge, etc.

In addition to events and physical objects, there are a class of inertial frames of reference. Each inertial frame of reference provides a coordinate system for events in the spacetime M. Furthermore, this frame of reference also gives coordinates to all other physical characteristics of objects in the spacetime; for instance, it will provide coordinates for the momentum and energy of an object, coordinates for an electromagnetic field, and so forth.

We assume that given any two inertial frames of reference, there exists a coordinate transformation that converts the coordinates from one frame of reference to the coordinates in another frame of reference. This transformation not only provides a conversion for spacetime coordinates , but will also provide a conversion for all other physical coordinates, such as a conversion law for momentum and energy , etc. (In practice, these conversion laws can be efficiently handled using the mathematics of tensors.)

We also assume that the universe obeys a number of physical laws. Mathematically, each physical law can be expressed with respect to the coordinates given by an inertial frame of reference by a mathematical equation (for instance, a differential equation) which relates the various coordinates of the various objects in the spacetime. A typical example is Maxwell's equations. Another is Newton's first law.

1. First Postulate (Principle of relativity)

Under transitions between inertial reference frames, the equations of all fundamental laws of physics stay form-invariant, while all the numerical constants entering these equations preserve their values. Thus, if a fundamental physical law is expressed with a mathematical equation in one inertial frame, it must be expressed by an identical equation in any other inertial frame, provided both frames are parameterised with charts of the same type. (The caveat on charts is relaxed, if we employ connections to write the law in a covariant form.)

2. Second Postulate (Invariance of c)

There exists an absolute constant with the following property. If A, B are two events which have coordinates and in one inertial frame , and have coordinates and in another inertial frame , then
if and only if .

Informally, the Second Postulate asserts that objects travelling at speed c in one reference frame will necessarily travel at speed c in all reference frames. This postulate is a subset of the postulates that underlie Maxwell's equations in the interpretation given to them in the context of special relativity. However, Maxwell's equations rely on several other postulates, some of which are now known to be false (e.g., Maxwell's equations cannot account for the quantum attributes of electromagnetic radiation).

The second postulate can be used to imply a stronger version of itself, namely that the spacetime interval is invariant under changes of inertial reference frame. In the above notation, this means that

for any two events A, B. This can in turn be used to deduce the transformation laws between reference frames; see Lorentz transformation.

The postulates of special relativity can be expressed very succinctly using the mathematical language of pseudo-Riemannian manifolds. The second postulate is then an assertion that the four-dimensional spacetime M is a pseudo-Riemannian manifold equipped with a metric g of signature (1,3), which is given by the Minkowski metric when measured in each inertial reference frame. This metric is viewed as one of the physical quantities of the theory; thus it transforms in a certain manner when the frame of reference is changed, and it can be legitimately used in describing the laws of physics. The first postulate is an assertion that the laws of physics are invariant when represented in any frame of reference for which g is given by the Minkowski metric. One advantage of this formulation is that it is now easy to compare special relativity with general relativity, in which the same two postulates hold but the assumption that the metric is required to be Minkowski is dropped.

The theory of Galilean relativity is the limiting case of special relativity in the limit (which is sometimes referred to as the non-relativistic limit). In this theory, the first postulate remains unchanged, but the second postulate is modified to:

If A, B are two events which have coordinates and in one inertial frame , and have coordinates and in another inertial frame , then . Furthermore, if , then
.

The physical theory given by classical mechanics, and Newtonian gravity is consistent with Galilean relativity, but not special relativity. Conversely, Maxwell's equations are not consistent with Galilean relativity unless one postulates the existence of a physical aether. In a surprising number of cases, the laws of physics in special relativity (such as the famous equation ) can be deduced by combining the postulates of special relativity with the hypothesis that the laws of special relativity approach the laws of classical mechanics in the non-relativistic limit.

Notes

  1. 1 2 Einstein, Albert (1905). "Zur elektrodynamik bewegter körper" [On the Electrodynamics of Moving Bodies]. Annalen der Physik. 17 (10): 891–921. Bibcode:1905AnP...322..891E. doi: 10.1002/andp.19053221004 .
  2. Einstein, A. (1912). "Relativität und Gravitation. Erwiderung auf eine Bemerkung von M. Abraham" [Relativity and Gravitation: Reply to a comment by M. Abraham]. Annalen der Physik. 343 (10): 1059–1064. Bibcode:1912AnP...343.1059E. doi:10.1002/andp.19123431014. ISSN   0003-3804. S2CID   120162895.
  3. Albert Einstein, Morgan document, 1921
  4. Minkowski, Hermann (1909), "Raum und Zeit"  , Physikalische Zeitschrift, 10: 75–88
  5. Feynman, R.P. (1970), "21–6. The potentials for a charge moving with constant velocity; the Lorentz formula", The Feynman Lectures on Physics, vol. 2, Reading: Addison Wesley Longman, ISBN   0-201-02115-3
  6. Ignatowsky, W. v. (1910). "Einige allgemeine Bemerkungen über das Relativitätsprinzip"  . Physikalische Zeitschrift. 11: 972–976.
  7. Ignatowsky, W. v. (1911). "Das Relativitätsprinzip"  . Archiv der Mathematik und Physik. 18: 17–40.
  8. Ignatowsky, W. v. (1911). "Eine Bemerkung zu meiner Arbeit: "Einige allgemeine Bemerkungen zum Relativitätsprinzip""  . Physikalische Zeitschrift. 12: 779.
  9. Frank, Philipp & Rothe, Hermann (1910), "Über die Transformation der Raum-Zeitkoordinaten von ruhenden auf bewegte Systeme", Annalen der Physik, 339 (5): 825–855, Bibcode:1911AnP...339..825F, doi:10.1002/andp.19113390502
  10. Frank, Philipp & Rothe, Hermann (1912). "Zur Herleitung der Lorentztransformation". Physikalische Zeitschrift. 13: 750–753.
  11. Baccetti, Valentina; Tate, Kyle; Visser, Matt (2012), "Inertial frames without the relativity principle", Journal of High Energy Physics, 2012 (5): 119, arXiv: 1112.1466 , Bibcode:2012JHEP...05..119B, doi:10.1007/JHEP05(2012)119, S2CID   118695037 ; See references 5–25 therein.
  12. Morin, David (2008). Introduction to Classical Mechanics: With Problems and Solutions. Cambridge University Press. p. 549. ISBN   978-1-139-46837-4. Chapter "Relativity without c" page 549
  13. 1 2 Einstein, Albert (1914). "Prinzipielles zur verallgemeinerten Relativitätstheorie und Gravitationstheorie" [On the Foundations of the Generalized Theory of Relativity and the Theory of Gravitation]. Physikalische Zeitschrift (in German). 15: 176–180. Bibcode:1914PhyZ...15..176E.
  14. Taylor, Edwin F. (1992). Spacetime physics : Introduction to special relativity. John Archibald Wheeler (Second ed.). New York, NY: Freeman. pp. 56–57. ISBN   0-7167-2327-1. OCLC   25165077.
  15. Einstein, Albert (1916). "Spielen Gravitationsfelder im Aufber der Materiellen Elementarteilchen eine Wesentliche Rolle?" [Do gravitational fields play an essential part in the structure of the elementary particles of matter?]. Königlich Preußische Akademie der Wissenschaften, Berlin (in German). -: 349–356.
  16. Norton, J D (1993). "General covariance and the foundations of general relativity: eight decades of dispute". Reports on Progress in Physics. 56 (7): 791–858. Bibcode:1993RPPh...56..791N. doi:10.1088/0034-4885/56/7/001. S2CID   250902085.
  17. Hertz, H. (1890). "Ueber die Grundgleichungen der Electrodynamik für bewegte Körper" [On the Basic Equations of Electrodynamics for Moving Bodies]. Annalen der Physik und Chemie (in German). 277 (11): 369–399. Bibcode:1890AnP...277..369H. doi:10.1002/andp.18902771102.
  18. Einstein, Albert (1910). "The Principle of Relativity and Its Consequences in Modern Physics". Archives des sciences physiques et naturelles (in German). 29: 5–28, 125–1.

Related Research Articles

In classical physics and special relativity, an inertial frame of reference is a frame of reference not undergoing any acceleration. It is a frame in which an isolated physical object—an object with zero net force acting on it—is perceived to move with a constant velocity or, equivalently, it is a frame of reference in which Newton's first law of motion holds. All inertial frames are in a state of constant, rectilinear motion with respect to one another; in other words, an accelerometer moving with any of them would detect zero acceleration.

<span class="mw-page-title-main">Lorentz transformation</span> Family of linear transformations

In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Special relativity</span> Theory of interwoven space and time by Albert Einstein

In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 treatment, the theory is based on two postulates:

  1. The laws of physics are invariant (identical) in all inertial frames of reference.
  2. The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer.
<span class="mw-page-title-main">Spacetime</span> Mathematical model combining space and time

In physics, spacetime is any mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects such as how different observers perceive where and when events occur.

<span class="mw-page-title-main">Theory of relativity</span> Two interrelated physics theories by Albert Einstein

The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to the forces of nature. It applies to the cosmological and astrophysical realm, including astronomy.

In physics and astronomy, a frame of reference is an abstract coordinate system whose origin, orientation, and scale are specified by a set of reference points―geometric points whose position is identified both mathematically and physically.

In physics, the principle of relativity is the requirement that the equations describing the laws of physics have the same form in all admissible frames of reference.

<span class="mw-page-title-main">Length contraction</span> Contraction of length in the direction of propagation in Minkowski space

Length contraction is the phenomenon that a moving object's length is measured to be shorter than its proper length, which is the length as measured in the object's own rest frame. It is also known as Lorentz contraction or Lorentz–FitzGerald contraction and is usually only noticeable at a substantial fraction of the speed of light. Length contraction is only in the direction in which the body is travelling. For standard objects, this effect is negligible at everyday speeds, and can be ignored for all regular purposes, only becoming significant as the object approaches the speed of light relative to the observer.

Rindler coordinates are a coordinate system used in the context of special relativity to describe the hyperbolic acceleration of a uniformly accelerating reference frame in flat spacetime. In relativistic physics the coordinates of a hyperbolically accelerated reference frame constitute an important and useful coordinate chart representing part of flat Minkowski spacetime. In special relativity, a uniformly accelerating particle undergoes hyperbolic motion, for which a uniformly accelerating frame of reference in which it is at rest can be chosen as its proper reference frame. The phenomena in this hyperbolically accelerated frame can be compared to effects arising in a homogeneous gravitational field. For general overview of accelerations in flat spacetime, see Acceleration and Proper reference frame.

The history of special relativity consists of many theoretical results and empirical findings obtained by Albert A. Michelson, Hendrik Lorentz, Henri Poincaré and others. It culminated in the theory of special relativity proposed by Albert Einstein and subsequent work of Max Planck, Hermann Minkowski and others.

What is now often called Lorentz ether theory (LET) has its roots in Hendrik Lorentz's "theory of electrons", which marked the end of the development of the classical aether theories at the end of the 19th and at the beginning of the 20th century.

<span class="mw-page-title-main">Relativity of simultaneity</span> Concept that distant simultaneity is not absolute, but depends on the observers reference frame

In physics, the relativity of simultaneity is the concept that distant simultaneity – whether two spatially separated events occur at the same time – is not absolute, but depends on the observer's reference frame. This possibility was raised by mathematician Henri Poincaré in 1900, and thereafter became a central idea in the special theory of relativity.

Albert Einstein presented the theories of special relativity and general relativity in publications that either contained no formal references to previous literature, or referred only to a small number of his predecessors for fundamental results on which he based his theories, most notably to the work of Henri Poincaré and Hendrik Lorentz for special relativity, and to the work of David Hilbert, Carl F. Gauss, Bernhard Riemann, and Ernst Mach for general relativity. Subsequently, claims have been put forward about both theories, asserting that they were formulated, either wholly or in part, by others before Einstein. At issue is the extent to which Einstein and various other individuals should be credited for the formulation of these theories, based on priority considerations.

<span class="mw-page-title-main">Moving magnet and conductor problem</span> Thought experiment in physics

The moving magnet and conductor problem is a famous thought experiment, originating in the 19th century, concerning the intersection of classical electromagnetism and special relativity. In it, the current in a conductor moving with constant velocity, v, with respect to a magnet is calculated in the frame of reference of the magnet and in the frame of reference of the conductor. The observable quantity in the experiment, the current, is the same in either case, in accordance with the basic principle of relativity, which states: "Only relative motion is observable; there is no absolute standard of rest". However, according to Maxwell's equations, the charges in the conductor experience a magnetic force in the frame of the magnet and an electric force in the frame of the conductor. The same phenomenon would seem to have two different descriptions depending on the frame of reference of the observer.

<span class="mw-page-title-main">Spacetime diagram</span> Graph of space and time in special relativity

A spacetime diagram is a graphical illustration of objects' locations in space at various times, especially in the special theory of relativity. Spacetime diagrams can show the geometry underlying phenomena like time dilation and length contraction without mathematical equations.

Test theories of special relativity give a mathematical framework for analyzing results of experiments to verify special relativity.

There have been various formulations of special relativity over the years which differ from Einstein's theory. While some are mathematically equivalent to Einstein's theory, others aim to revise or extend it.

<span class="mw-page-title-main">Derivations of the Lorentz transformations</span>

There are many ways to derive the Lorentz transformations utilizing a variety of physical principles, ranging from Maxwell's equations to Einstein's postulates of special relativity, and mathematical tools, spanning from elementary algebra and hyperbolic functions, to linear algebra and group theory.

Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration". SR as the theory of flat Minkowski spacetime remains valid in the presence of accelerations, because general relativity (GR) is only required when there is curvature of spacetime caused by the energy–momentum tensor. However, since the amount of spacetime curvature is not particularly high on Earth or its vicinity, SR remains valid for most practical purposes, such as experiments in particle accelerators.