Formulations of special relativity

Last updated

The theory of special relativity was initially developed in 1905 by Albert Einstein. However, other interpretations of special relativity have been developed, some on the basis of different foundational axioms. While some are mathematically equivalent to Einstein's theory, others aim to revise or extend it.

Contents

Einstein's formulation was based on two postulates, as detailed below. Some formulations modify these postulates or attempt to derive the second postulate by deduction. Others differ in their approach to the geometry of spacetime and the linear transformations between frames of reference.

Einstein's two postulates

As formulated by Albert Einstein in 1905, the theory of special relativity was based on two main postulates:

  1. The principle of relativity: The form of a physical law is the same in any inertial frame (a frame of reference that is not accelerating in any direction).
  2. The speed of light is constant: In all inertial frames, the speed of light c is the same whether the light is emitted from a source at rest or in motion. (Note that this does not apply in non-inertial frames, indeed between accelerating frames the speed of light cannot be constant. [1] Although it can be applied in non-inertial frames if an observer is confined to making local measurements. [2] )

Einstein developed the theory of special relativity based on these two postulates. This theory made many predictions which have been experimentally verified, including the relativity of simultaneity, length contraction, time dilation, the relativistic velocity addition formula, the relativistic Doppler effect, relativistic mass, a universal speed limit, mass–energy equivalence, the speed of causality and the Thomas precession. [3] [4]

Single-postulate approaches

Several physicists have derived a theory of special relativity from only the first postulate – the principle of relativity – without assuming the second postulate that the speed of light is constant. [1] [5] [6] [7] The term "single-postulate" is misleading because these formulations may rely on unsaid assumptions such as the cosmological principle, that is, the isotropy and homogeneity of space. [8] [9] As such, the term does not refer to the exact number of postulates, but is rather used to distinguish such approaches from the "two-postulate" formulation. Single postulate approaches generally deduce, rather than assume, that the speed of light is constant.

Without assuming the second postulate, the Lorentz transformations can be obtained. However, there is a free parameter k, which renders it incapable of making experimental predictions unless further assumptions are made. The case k = 0 is equivalent to Newtonian physics. [10]

Lorentz ether theory

Hendrik Lorentz and Henri Poincaré developed their version of special relativity in a series of papers from about 1900 to 1905. They used Maxwell's equations and the principle of relativity to deduce a theory that is mathematically equivalent to the theory later developed by Einstein.

Taiji relativity

Taiji relativity is a formulation of special relativity developed by Jong-Ping Hsu and Leonardo Hsu. [1] [11] [12] [13] The name of the theory, Taiji, is a Chinese word which refers to ultimate principles which predate the existence of the world. Hsu and Hsu claimed that measuring time in units of distance allowed them to develop a theory of relativity without using the second postulate in their derivation.

It is the principle of relativity, that Hsu & Hsu say, when applied to 4D spacetime, implies the invariance of the 4D-spacetime interval . The difference between this and the spacetime interval in Minkowski space is that is invariant purely by the principle of relativity whereas requires both postulates. The "principle of relativity" in spacetime is taken to mean invariance of laws under 4-dimensional transformations. They claim that there are versions of relativity which are consistent with experiment but have a definition of time where the "speed" of light is not constant. They develop one such version called common relativity which is more convenient for performing calculations for "relativistic many body problems" than using special relativity.

Several authors have made the case that Taiji relativity still assumes a further postulate – the cosmological principle that time and space look the same in all directions. [14] Behara (2003) wrote that "the postulation on the speed of light in special relativity is an inevitable consequence of the relativity principle taken in conjunction with the idea of the homogeneity and isotropy of space and the homogeneity of time in all inertial frames". [15]

Test theories of special relativity

Test theories of special relativity are flat spacetime theories which are used to test the predictions of special relativity. They differ from the two-postulate special relativity by differentiating between the one-way speed of light and the two-way speed of light. This results in different notions of time simultaneity. There is Robertson's test theory (1949) which predicts different experimental results from Einstein's special relativity, and there is the Mansouri Sexl theory (1977) which is equivalent to Robertson's theory. There is also Edward's theory (1963) which cannot be called a test theory because it is physically equivalent to special relativity. [16]

Geometric formulations

Minkowski spacetime

Minkowski space (or Minkowski spacetime) is a mathematical setting in which special relativity is conveniently formulated. Minkowski space is named for the German mathematician Hermann Minkowski, who around 1907 realized that the theory of special relativity (previously developed by Poincaré and Einstein) could be elegantly described using a four-dimensional spacetime, which combines the dimension of time with the three dimensions of space.

Mathematically, there are a number of ways in which the four-dimensions of Minkowski spacetime are commonly represented: as a four-vector with 4 real coordinates, as a four-vector with 3 real and one complex coordinate, or using tensors.

Spacetime algebra

Spacetime algebra is a type of geometric algebra that is closely related to Minkowski space, and is equivalent to other formalisms of special relativity. It uses mathematical objects such as bivectors to replace tensors in traditional formalisms of Minkowski spacetime, leading to much simpler equations than in matrix mechanics or vector calculus.

de Sitter relativity

According to the works of Cacciatori, Gorini, Kamenshchik, [7] Bacry and Lévy-Leblond [17] and the references therein, if you take Minkowski's ideas to their logical conclusion, then not only are boosts non-commutative but translations are also non-commutative. This means that the symmetry group of space time is a de Sitter group rather than the Poincaré group. This results in spacetime being slightly curved even in the absence of matter or energy. This residual curvature is caused by a cosmological constant to be determined by observation. Due to the small magnitude of the constant, the special relativity with the Poincaré group is more than accurate enough for all practical purposes, although near the Big Bang and inflation de Sitter relativity may be more useful due to the cosmological constant being larger back then. Note this is not the same thing as solving Einstein's field equations for general relativity to get a de Sitter Universe, rather the de Sitter relativity is about getting a de Sitter Group for special relativity which neglects gravity.

Euclidean relativity

Euclidean relativity [18] [19] [20] [21] [22] [23] [24] uses a Euclidean (++++) metric in four-dimensional Euclidean space as opposed to the traditional Minkowski (+---) or (-+++) metric in four-dimensional space-time. [a] The Euclidean metric is derived from the Minkowski metric by rewriting into the equivalent . The roles of time t and proper time have switched so that proper time takes the role of the coordinate for the 4th spatial dimension. A universal velocity for all objects moving through four-dimensional space appears from the regular time derivative . The approach differs from the so-called Wick rotation or complex Euclidean relativity. In Wick rotation, time is replaced by , which also leads to a positive definite metric, but it maintains proper time as the Lorentz invariant value whereas in Euclidean relativity becomes a coordinate. Because implies that photons travel at the speed of light in the subspace {x, y, z} and baryonic matter that is at rest in {x, y, z} travels normal to photons along , a paradox arises on how photons can be propagated in a space-time. The possible existence of parallel space-times or parallel worlds shifted and co-moving along is the approach of Giorgio Fontana. [25] Euclidean geometry is consistent with Minkowski's classical theory of relativity. When the geometric projection of 4D properties to 3D space is made, the hyperbolic Minkowski geometry transforms into a rotation in 4D circular geometry.

Very special relativity

Ignoring gravity, experimental bounds seem to suggest that special relativity with its Lorentz symmetry and Poincaré symmetry describes spacetime. Cohen and Glashow [26] have demonstrated that a small subgroup of the Lorentz group is sufficient to explain all the current bounds.

The minimal subgroup in question can be described as follows: The stabilizer of a null vector is the special Euclidean group SE(2), which contains T(2) as the subgroup of parabolic transformations. This T(2), when extended to include either parity or time reversal (i.e. subgroups of the orthochronous and time-reversal respectively), is sufficient to give us all the standard predictions. Their new symmetry is called Very Special Relativity (VSR).

Doubly special relativity

Doubly special relativity (DSR) is a modified theory of special relativity in which there is not only an observer-independent maximum velocity (the speed of light), but an observer-independent minimum length (the Planck length).

The motivation to these proposals is mainly theoretical, based on the following observation: the Planck length is expected to play a fundamental role in a theory of quantum gravity, setting the scale at which quantum gravity effects cannot be neglected and new phenomena are observed. If special relativity is to hold up exactly to this scale, different observers would observe quantum gravity effects at different scales, due to the Lorentz–FitzGerald contraction, in contradiction to the principle that all inertial observers should be able to describe phenomena by the same physical laws.

A drawback of the usual doubly special relativity models is that they are valid only at the energy scales where ordinary special relativity is supposed to break down, giving rise to a patchwork relativity. On the other hand, de Sitter relativity is found to be invariant under a simultaneous re-scaling of mass, energy and momentum, and is consequently valid at all energy scales.

See also

Notes

  1. The Minkowski metric describes four-dimensional space-time: the coordinates are time and three spatial dimensions. The Euclidean metric describes four-dimensional Euclidean space: it has four spatial coordinates.

Related Research Articles

<span class="mw-page-title-main">Special relativity</span> Theory of interwoven space and time by Albert Einstein

In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 paper, On the Electrodynamics of Moving Bodies, the theory is presented as being based on just two postulates:

  1. The laws of physics are invariant (identical) in all inertial frames of reference. This is known as the principle of relativity.
  2. The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer. This is known as the principle of light constancy, or the principle of light speed invariance.
<span class="mw-page-title-main">Spacetime</span> Mathematical model combining space and time

In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive where and when events occur.

<span class="mw-page-title-main">Twin paradox</span> Thought experiment in special relativity

In physics, the twin paradox is a thought experiment in special relativity involving twins, one of whom takes a space voyage at relativistic speeds and returns home to find that the twin who remained on Earth has aged more. This result appears puzzling because each twin sees the other twin as moving, and so, as a consequence of an incorrect and naive application of time dilation and the principle of relativity, each should paradoxically find the other to have aged less. However, this scenario can be resolved within the standard framework of special relativity: the travelling twin's trajectory involves two different inertial frames, one for the outbound journey and one for the inbound journey. Another way to understand the paradox is to realize the travelling twin is undergoing acceleration, which makes them a non-inertial observer. In both views there is no symmetry between the spacetime paths of the twins. Therefore, the twin paradox is not actually a paradox in the sense of a logical contradiction. There is still debate as to the resolution of the twin paradox.

The world line of an object is the path that an object traces in 4-dimensional spacetime. It is an important concept of modern physics, and particularly theoretical physics.

In physics, in particular in special relativity and general relativity, a four-velocity is a four-vector in four-dimensional spacetime that represents the relativistic counterpart of velocity, which is a three-dimensional vector in space.

<span class="mw-page-title-main">Minkowski space</span> Spacetime used in theory of relativity

In physics, Minkowski space is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model.

Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them, or a difference in gravitational potential between their locations. When unspecified, "time dilation" usually refers to the effect due to velocity.

<span class="mw-page-title-main">Anti-de Sitter space</span> Maximally symmetric Lorentzian manifold with a negative cosmological constant

In mathematics and physics, n-dimensional anti-de Sitter space (AdSn) is a maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are named after Willem de Sitter (1872–1934), professor of astronomy at Leiden University and director of the Leiden Observatory. Willem de Sitter and Albert Einstein worked together closely in Leiden in the 1920s on the spacetime structure of the universe. Paul Dirac was the first person to rigorously explore anti-de Sitter space, doing so in 1963.

<span class="mw-page-title-main">Length contraction</span> Contraction of length in the direction of propagation in Minkowski space

Length contraction is the phenomenon that a moving object's length is measured to be shorter than its proper length, which is the length as measured in the object's own rest frame. It is also known as Lorentz contraction or Lorentz–FitzGerald contraction and is usually only noticeable at a substantial fraction of the speed of light. Length contraction is only in the direction in which the body is travelling. For standard objects, this effect is negligible at everyday speeds, and can be ignored for all regular purposes, only becoming significant as the object approaches the speed of light relative to the observer.

<span class="mw-page-title-main">Proper time</span> Elapsed time between two events as measured by a clock that passes through both events

In relativity, proper time along a timelike world line is defined as the time as measured by a clock following that line. The proper time interval between two events on a world line is the change in proper time, which is independent of coordinates, and is a Lorentz scalar. The interval is the quantity of interest, since proper time itself is fixed only up to an arbitrary additive constant, namely the setting of the clock at some event along the world line.

Rindler coordinates are a coordinate system used in the context of special relativity to describe the hyperbolic acceleration of a uniformly accelerating reference frame in flat spacetime. In relativistic physics the coordinates of a hyperbolically accelerated reference frame constitute an important and useful coordinate chart representing part of flat Minkowski spacetime. In special relativity, a uniformly accelerating particle undergoes hyperbolic motion, for which a uniformly accelerating frame of reference in which it is at rest can be chosen as its proper reference frame. The phenomena in this hyperbolically accelerated frame can be compared to effects arising in a homogeneous gravitational field. For general overview of accelerations in flat spacetime, see Acceleration and Proper reference frame.

Albert Einstein derived the theory of special relativity in 1905, from principle now called the postulates of special relativity. Einstein's formulation is said to only require two postulates, though his derivation implies a few more assumptions.

The history of special relativity consists of many theoretical results and empirical findings obtained by Albert A. Michelson, Hendrik Lorentz, Henri Poincaré and others. It culminated in the theory of special relativity proposed by Albert Einstein and subsequent work of Max Planck, Hermann Minkowski and others.

In a relativistic theory of physics, a Lorentz scalar is a scalar expression whose value is invariant under any Lorentz transformation. A Lorentz scalar may be generated from, e.g., the scalar product of vectors, or by contracting tensors. While the components of the contracted quantities may change under Lorentz transformations, the Lorentz scalars remain unchanged.

What is now often called Lorentz ether theory (LET) has its roots in Hendrik Lorentz's "theory of electrons", which marked the end of the development of the classical aether theories at the end of the 19th and at the beginning of the 20th century.

<span class="mw-page-title-main">Relativity of simultaneity</span> Concept that simultaneity depends on choice of reference frame

In physics, the relativity of simultaneity is the concept that distant simultaneity – whether two spatially separated events occur at the same time – is not absolute, but depends on the observer's reference frame. This possibility was raised by mathematician Henri Poincaré in 1900, and thereafter became a central idea in the special theory of relativity.

<span class="mw-page-title-main">Spacetime diagram</span> Graph of space and time in special relativity

A spacetime diagram is a graphical illustration of locations in space at various times, especially in the special theory of relativity. Spacetime diagrams can show the geometry underlying phenomena like time dilation and length contraction without mathematical equations.

This article will use the Einstein summation convention.

<span class="mw-page-title-main">Time in physics</span> Fundamental quantity in physics

In physics, time is defined by its measurement: time is what a clock reads. In classical, non-relativistic physics, it is a scalar quantity and, like length, mass, and charge, is usually described as a fundamental quantity. Time can be combined mathematically with other physical quantities to derive other concepts such as motion, kinetic energy and time-dependent fields. Timekeeping is a complex of technological and scientific issues, and part of the foundation of recordkeeping.

Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration". SR as the theory of flat Minkowski spacetime remains valid in the presence of accelerations, because general relativity (GR) is only required when there is curvature of spacetime caused by the energy–momentum tensor. However, since the amount of spacetime curvature is not particularly high on Earth or its vicinity, SR remains valid for most practical purposes, such as experiments in particle accelerators.

References

  1. 1 2 3 Hsu, J.-P.; Hsu, L. (2006). A Broader View of Relativity. World Scientific. ISBN   981-256-651-1.
  2. Petkov, Vesselin (2006). Relativity and the Nature of Spacetime (illustrated ed.). Springer Science & Business Media. p. 193. ISBN   978-3-540-27700-2. Extract of page 193
  3. Griffiths, David J. (2013). "Electrodynamics and Relativity". Introduction to Electrodynamics (4th ed.). Pearson. Chapter 12. ISBN   978-0-321-85656-2.
  4. Jackson, John D. (1999). "Special Theory of Relativity". Classical Electrodynamics (3rd ed.). John Wiley & Sons, Inc. Chapter 11. ISBN   0-471-30932-X.
  5. von Ignatowsky, W. (1911). "Das Relativitätsprinzip". Archiv der Mathematik und Physik (in German). 17: 1.
  6. Feigenbaum, M. J. (2008). "The Theory of Relativity – Galileo's Child". arXiv: 0806.1234 [physics.class-ph].
  7. 1 2 Cacciatori, S.; Gorini, V.; Kamenshchik, A. (2008). "Special relativity in the 21st century". Annalen der Physik . 520 (9–10): 728–768. arXiv: 0807.3009 . Bibcode:2008AnP...520..728C. doi:10.1002/andp.200810321. S2CID   119191753.
  8. C., E. (November 1924). "The Mathematical Theory of Relativity". Nature. 114 (2874): 782–783. Bibcode:1924Natur.114..782C. doi:10.1038/114782a0. ISSN   1476-4687. S2CID   4064705.
  9. Einstein, A. (1921). Morgan document.[ full citation needed ]
  10. Drory, Alon (1 August 2015). "The necessity of the second postulate in special relativity". Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics. 51: 57–67. arXiv: 1412.4018 . Bibcode:2015SHPMP..51...57D. doi:10.1016/j.shpsb.2014.08.015. ISSN   1355-2198.
  11. Hsu, J.-P.; Hsu, L. (1994). "A physical theory based solely on the first postulate of relativity". Physics Letters A . 196 (1–2): 1–6. Bibcode:1994PhLA..196....1H. doi:10.1016/0375-9601(94)91033-2.
    Erratum Hsu, Jong-Ping; Hsu, Leonardo (1996). "A physical theory based solely on the first postulate of relativity (Physics Letters a 196 (1994)1)". Physics Letters A . 217 (6): 359. Bibcode:1996PhLA..217..359H. doi: 10.1016/0375-9601(96)00329-5 .
  12. Hsu, J.-P.; Hsu, L. (2008). "Experimental tests of a new Lorentz-invariant dynamics based solely on the first postulate of relativity". Il Nuovo Cimento B . 111 (11): 1283–1297. Bibcode:1996NCimB.111.1283H. doi:10.1007/BF02742506. S2CID   120483040.
  13. Hsu, J.-P.; Hsu, L. (2008). "Four-dimensional symmetry of taiji relativity and coordinate transformations based on a weaker postulate for the speed of light". Il Nuovo Cimento B . 111 (11): 1299–1313. Bibcode:1996NCimB.111.1299H. doi:10.1007/BF02742507. S2CID   119831503.
  14. Ai, Xiao-Bai (1996). "On the Basis of Taiji Relativity". Chinese Physics Letters . 13 (5): 321–324. Bibcode:1996ChPhL..13..321A. doi:10.1088/0256-307X/13/5/001. S2CID   250777204.
  15. Behera, H. (2003). "A comment on the Invariance of the Speed of Light". Bulletin of Orissa Physical Society . 10: 4087. arXiv: physics/0304087 . Bibcode:2003physics...4087B.
  16. Zhang, Y.-Z. (1997). Special Relativity and Its Experimental Foundations . World Scientific. ISBN   978-981-02-2749-4.
  17. Bacry, H.; Lévy-Leblond, J.-M. (1968). "Possible Kinematics". Journal of Mathematical Physics . 9 (10): 1605–1614. Bibcode:1968JMP.....9.1605B. doi:10.1063/1.1664490.
  18. Yamashita, Takuya (May 2023). "Theoretical Evidence for Principles of Special Relativity Based on Isotropic and Uniform Four-Dimensional Space". Preprints. doi: 10.20944/preprints202305.1785.v1 .
  19. Hans, H. (2001). "Proper time formulation of relativistic dynamics". Foundations of Physics . 31 (9): 1357–1400. Bibcode:2001FoPh...31.1357M. doi:10.1023/A:1012274211780. S2CID   117357649.
  20. Gersten, A. (2003). "Euclidean special relativity". Foundations of Physics . 33 (8): 1237–1251. Bibcode:2003FoPh...33.1237G. doi:10.1023/A:1025631125442. S2CID   15496801.
  21. van Linden, R. F. J. (2006). "Minkowski versus Euclidean 4-vectors" (PDF).
  22. Crabbe, A. (2004). "Alternative conventions and geometry for Special Relativity" (PDF). Annales de la Fondation Louis de Broglie . 29 (4): 589–608.
  23. Almeida, J. (2001). "An alternative to Minkowski space-time". arXiv: gr-qc/0104029 .
  24. "Euclidean relativity portal". 28 September 2012. Retrieved 23 July 2014.
  25. Fontana, G. (2005). "The Four Space-times Model of Reality". AIP Conference Proceedings . 746: 1403–1410. arXiv: physics/0410054 . Bibcode:2005AIPC..746.1403F. doi:10.1063/1.1867271. S2CID   118189976.
  26. Cohen, Andrew G.; Glashow, Sheldon L. (2006). "Very special relativity". Physical Review Letters . 97 (2): 1601. arXiv: hep-ph/0601236 . Bibcode:2006PhRvL..97b1601C. doi:10.1103/PhysRevLett.97.021601. PMID   16907430. S2CID   11056484.