Cosmological principle

Last updated
Unsolved problem in physics:
Is the universe homogeneous and isotropic at large enough scales, as claimed by the cosmological principle and assumed by all models that use the Friedmann–Lemaître–Robertson–Walker metric, including the current version of the ΛCDM model, or is the universe inhomogeneous or anisotropic? [1] [2] [3]

In modern physical cosmology, the cosmological principle is the notion that the spatial distribution of matter in the universe is uniformly isotropic and homogeneous when viewed on a large enough scale, since the forces are expected to act equally throughout the universe on a large scale, and should, therefore, produce no observable inequalities in the large-scale structuring over the course of evolution of the matter field that was initially laid down by the Big Bang.

Contents

Definition

Astronomer William Keel explains:

The cosmological principle is usually stated formally as 'Viewed on a sufficiently large scale, the properties of the universe are the same for all observers.' This amounts to the strongly philosophical statement that the part of the universe which we can see is a fair sample, and that the same physical laws apply throughout. In essence, this in a sense says that the universe is knowable and is playing fair with scientists. [4]

The cosmological principle depends on a definition of "observer", and contains an implicit qualification and two testable consequences.

"Observers" means any observer at any location in the universe, not simply any human observer at any location on Earth: as Andrew Liddle puts it, "the cosmological principle [means that] the universe looks the same whoever and wherever you are." [5]

The qualification is that variation in physical structures can be overlooked, provided this does not imperil the uniformity of conclusions drawn from observation: the Sun is different from the Earth, our galaxy is different from a black hole, some galaxies advance toward rather than recede from us, and the universe has a "foamy" texture of galaxy clusters and voids, but none of these different structures appears to violate the basic laws of physics.

The two testable structural consequences of the cosmological principle are homogeneity and isotropy. Homogeneity means that the same observational evidence is available to observers at different locations in the universe ("the part of the universe which we can see is a fair sample"). Isotropy means that the same observational evidence is available by looking in any direction in the universe ("the same physical laws apply throughout").[ dubious discuss ] The principles are distinct but closely related, because a universe that appears isotropic from any two (for a spherical geometry, three) locations must also be homogeneous.

Origin

The cosmological principle is first clearly asserted in the Philosophiæ Naturalis Principia Mathematica (1687) of Isaac Newton.[ dubious discuss ] In contrast to some earlier classical or medieval cosmologies, in which Earth rested at the center of universe, Newton conceptualized the Earth as a sphere in orbital motion around the Sun within an empty space that extended uniformly in all directions to immeasurably large distances. He then showed, through a series of mathematical proofs on detailed observational data of the motions of planets and comets, that their motions could be explained by a single principle of "universal gravitation" that applied as well to the orbits of the Galilean moons around Jupiter, the Moon around the Earth, the Earth around the Sun, and to falling bodies on Earth. That is, he asserted the equivalent material nature of all bodies within the Solar System, the identical nature of the Sun and distant stars and thus the uniform extension of the physical laws of motion to a great distance beyond the observational location of Earth itself.

Implications

Since the 1990s, observations assuming the cosmological principle have concluded that around 68% of the mass–energy density of the universe can be attributed to dark energy, which led to the development of the ΛCDM model. [6] [7] [8]

Observations show that more distant galaxies are closer together and have lower content of chemical elements heavier than lithium.[ citation needed ] Applying the cosmological principle, this suggests that heavier elements were not created in the Big Bang but were produced by nucleosynthesis in giant stars and expelled across a series of supernovae and new star formation from the supernova remnants, which means heavier elements would accumulate over time. Another observation is that the furthest galaxies (earlier time) are often more fragmentary, interacting and unusually shaped than local galaxies (recent time), suggesting evolution in galaxy structure as well.

A related implication of the cosmological principle is that the largest discrete structures in the universe are in mechanical equilibrium. Homogeneity and isotropy of matter at the largest scales would suggest that the largest discrete structures are parts of a single indiscrete form, like the crumbs which make up the interior of a cake. At extreme cosmological distances, the property of mechanical equilibrium in surfaces lateral to the line of sight can be empirically tested; however, under the assumption of the cosmological principle, it cannot be detected parallel to the line of sight (see timeline of the universe).

Cosmologists agree that in accordance with observations of distant galaxies, a universe must be non-static if it follows the cosmological principle. In 1923, Alexander Friedmann set out a variant of Albert Einstein's equations of general relativity that describe the dynamics of a homogeneous isotropic universe. [9] [10] Independently, Georges Lemaître derived in 1927 the equations of an expanding universe from the General Relativity equations. [11] Thus, a non-static universe is also implied, independent of observations of distant galaxies, as the result of applying the cosmological principle to general relativity.

Criticism

Karl Popper criticized the cosmological principle on the grounds that it makes "our lack of knowledge a principle of knowing something". He summarized his position as:

the "cosmological principles" were, I fear, dogmas that should not have been proposed. [12]

Observations

Although the universe is inhomogeneous at smaller scales, according to the ΛCDM model it ought to be isotropic and statistically homogeneous on scales larger than 250 million light years. However, recent findings (the Axis of Evil for example) have suggested that violations of the cosmological principle exist in the universe and thus have called the ΛCDM model into question, with some authors suggesting that the cosmological principle is now obsolete and the Friedmann–Lemaître–Robertson–Walker metric breaks down in the late universe. [1]

Violations of isotropy

The cosmic microwave background (CMB) is predicted by the ΛCDM model to be isotropic, that is to say that its intensity is about the same whichever direction we look at. [13] Data from the Planck Mission shows hemispheric bias in 2 respects: one with respect to average temperature (i.e. temperature fluctuations), the second with respect to larger variations in the degree of perturbations (i.e. densities), [14] [15] the collaboration noted that these features are not strongly statistically inconsistent with isotropy. [16] Some authors say that the universe around Earth is isotropic at high significance by studies of the cosmic microwave background temperature maps. [17] There are however claims of isotropy violations from galaxy clusters, [2] [3] quasars, [18] and type Ia supernovae. [19]

Violations of homogeneity

The cosmological principle implies that at a sufficiently large scale, the universe is homogeneous. Based on N-body simulations in a ΛCDM universe, Yadav and his colleagues showed that the spatial distribution of galaxies is statistically homogeneous if averaged over scales of 260/h Mpc or more. [20]

A number of observations have been reported to be in conflict with predictions of maximal structure sizes:

However, as pointed out by Seshadri Nadathur in 2013 using statistical properties, [26] the existence of structures larger than the homogeneous scale (260/h Mpc by Yadav's estimation) [20] does not necessarily violate the cosmological principle in the ΛCDM model (see Huge-LQG § Dispute ). [27]

CMB dipole

Unsolved problem in physics:
Is the CMB dipole purely kinematic, or does it signal anisotropy of the universe, resulting in the breakdown of the FLRW metric and the cosmological principle? [1]

The cosmic microwave background (CMB) provides a snapshot of a largely isotropic and homogeneous universe. The largest scale feature of the CMB is the dipole anisotropy; it is typically subtracted from maps due to its large amplitude. The standard interpretation of the dipole is that it is due to the Doppler effect caused by the motion of the solar system with respect to the CMB rest-frame.

Several studies have reported dipoles in the large scale distribution of galaxies that align with the CMB dipole direction, but indicate a larger amplitude than would be caused by the CMB dipole velocity. [28] A similar dipole is seen in data of radio galaxies, however the amplitude of the dipole depends on the observing frequency showing that these anomalous features cannot be purely kinematic. [29] Other authors have found radio dipoles consistent with the CMB expectation. [30] Further claims of anisotropy along the CMB dipole axis have been made with respect to the Hubble diagram of type Ia supernovae [31] and quasars. [32] Separately, the CMB dipole direction has emerged as a preferred direction in some studies of alignments in quasar polarizations, [33]  strong lensing time delay, [34] type Ia supernovae, [35] and standard candles. [36] Some authors have argued that the correlation of distant effects with the dipole direction may indicate that its origin is not kinematic.

Alternatively, Planck data has been used to estimate the velocity with respect to the CMB independently of the dipole, by measuring the subtle aberrations and distortions of fluctuations caused by relativistic beaming [37] and separately using the Sunyaev-Zeldovich effect. [38] These studies found a velocity consistent with the value obtained from the dipole, indicating it is consistent with being entirely kinematic. Measurements of the velocity field of galaxies in the local universe show that on short scales galaxies are moving with the local group, and that the average mean velocity decreases with increasing distance. [39] This follows the expectation if the CMB dipole were due to the local peculiar velocity field, it becomes more homogeneous on large scales. Surveys of the local volume have been used to reveal a low density region in the opposite direction to the CMB dipole, [40] potentially explaining the origin of the local bulk flow.

Perfect cosmological principle

The perfect cosmological principle is an extension of the cosmological principle, and states that the universe is homogeneous and isotropic in space and time. In this view the universe looks the same everywhere (on the large scale), the same as it always has and always will. The perfect cosmological principle underpins steady state theory and emerges[ clarification needed ] from chaotic inflation theory. [41] [42] [43]

See also

Related Research Articles

<span class="mw-page-title-main">Big Bang</span> Physical theory

The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. It was first proposed as a physical theory in 1931 by Roman Catholic priest and physicist Georges Lemaître when he suggested the universe emerged from a "primeval atom". Various cosmological models of the Big Bang explain the evolution of the observable universe from the earliest known periods through its subsequent large-scale form. These models offer a comprehensive explanation for a broad range of observed phenomena, including the abundance of light elements, the cosmic microwave background (CMB) radiation, and large-scale structure. The uniformity of the universe, known as the flatness problem, is explained through cosmic inflation: a sudden and very rapid expansion of space during the earliest moments.

<span class="mw-page-title-main">Physical cosmology</span> Branch of cosmology which studies mathematical models of the universe

Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fundamental questions about its origin, structure, evolution, and ultimate fate. Cosmology as a science originated with the Copernican principle, which implies that celestial bodies obey identical physical laws to those on Earth, and Newtonian mechanics, which first allowed those physical laws to be understood.

<span class="mw-page-title-main">Cosmic inflation</span> Theory of rapid universe expansion

In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the very early universe. Following the inflationary period, the universe continued to expand, but at a slower rate. The re-acceleration of this slowing expansion due to dark energy began after the universe was already over 7.7 billion years old.

<span class="mw-page-title-main">Copernican principle</span> Principle that humans are not privileged observers of the universe

In physical cosmology, the Copernican principle states that humans, on the Earth or in the Solar System, are not privileged observers of the universe, that observations from the Earth are representative of observations from the average position in the universe. Named for Copernican heliocentrism, it is a working assumption that arises from a modified cosmological extension of Copernicus' argument of a moving Earth.

<span class="mw-page-title-main">Cosmic microwave background</span> Trace radiation from the early universe

The cosmic microwave background is microwave radiation that fills all space in the observable universe. It is sometimes called relic radiation. With a standard optical telescope, the background space between stars and galaxies is almost completely dark. However, a sufficiently sensitive radio telescope detects a faint background glow that is almost uniform and is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum. The accidental discovery of the CMB in 1965 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s.

<span class="mw-page-title-main">Cosmological constant</span> Constant representing stress–energy density of the vacuum

In cosmology, the cosmological constant, alternatively called Einstein's cosmological constant, is a coefficient that Albert Einstein initially added to his field equations of general relativity. He later removed it; however, much later it was revived to express the energy density of space, or vacuum energy, that arises in quantum mechanics. It is closely associated with the concept of dark energy.

<span class="mw-page-title-main">Hubble's law</span> Observation in physical cosmology

Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving away from Earth. The velocity of the galaxies has been determined by their redshift, a shift of the light they emit toward the red end of the visible light spectrum. The discovery of Hubble's law is attributed to Edwin Hubble's work published in 1929.

<span class="mw-page-title-main">Shape of the universe</span> Local and global geometry of the universe

In physical cosmology, the shape of the universe refers to both its local and global geometry. Local geometry is defined primarily by its curvature, while the global geometry is characterised by its topology. General relativity explains how spatial curvature is constrained by gravity. The global topology of the universe cannot be deduced from measurements of curvature inferred from observations within the family of homogeneous general relativistic models alone, due to the existence of locally indistinguishable spaces with varying global topological characteristics. For example; a multiply connected space like a 3 torus has everywhere zero curvature but is finite in extent, whereas a flat simply connected space is infinite in extent.

<span class="mw-page-title-main">Observable universe</span> All of space observable from the Earth at the present

The observable universe is a ball-shaped region of the universe consisting of all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time; the electromagnetic radiation from these objects has had time to reach the Solar System and Earth since the beginning of the cosmological expansion. Initially, it was estimated that there may be 2 trillion galaxies in the observable universe. That number was reduced in 2021 to several hundred billion based on data from New Horizons. Assuming the universe is isotropic, the distance to the edge of the observable universe is roughly the same in every direction. That is, the observable universe is a spherical region centered on the observer. Every location in the universe has its own observable universe, which may or may not overlap with the one centered on Earth.

Cosmic strings are hypothetical 1-dimensional topological defects which may have formed during a symmetry-breaking phase transition in the early universe when the topology of the vacuum manifold associated to this symmetry breaking was not simply connected. Their existence was first contemplated by the theoretical physicist Tom Kibble in the 1970s.

<span class="mw-page-title-main">Friedmann–Lemaître–Robertson–Walker metric</span> Metric based on the exact solution of Einsteins field equations of general relativity

The Friedmann–Lemaître–Robertson–Walker metric is a metric based on an exact solution of the Einstein field equations of general relativity. The metric describes a homogeneous, isotropic, expanding universe that is path-connected, but not necessarily simply connected. The general form of the metric follows from the geometric properties of homogeneity and isotropy; Einstein's field equations are only needed to derive the scale factor of the universe as a function of time. Depending on geographical or historical preferences, the set of the four scientists – Alexander Friedmann, Georges Lemaître, Howard P. Robertson and Arthur Geoffrey Walker – are variously grouped as Friedmann, Friedmann–Robertson–Walker (FRW), Robertson–Walker (RW), or Friedmann–Lemaître (FL). This model is sometimes called the Standard Model of modern cosmology, although such a description is also associated with the further developed Lambda-CDM model. The FLRW model was developed independently by the named authors in the 1920s and 1930s.

<span class="mw-page-title-main">Reionization</span> Process that caused matter to reionize early in the history of the Universe

In the fields of Big Bang theory and cosmology, reionization is the process that caused electrically neutral atoms in the universe to reionize after the lapse of the "dark ages".

<span class="mw-page-title-main">Age of the universe</span> Time elapsed since the Big Bang

In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe: a measurement based on direct observations of an early state of the universe, which indicate an age of 13.787±0.020 billion years as interpreted with the Lambda-CDM concordance model as of 2021; and a measurement based on the observations of the local, modern universe, which suggest a younger age. The uncertainty of the first kind of measurement has been narrowed down to 20 million years, based on a number of studies that all show similar figures for the age. These studies include researches of the microwave background radiation by the Planck spacecraft, the Wilkinson Microwave Anisotropy Probe and other space probes. Measurements of the cosmic background radiation give the cooling time of the universe since the Big Bang, and measurements of the expansion rate of the universe can be used to calculate its approximate age by extrapolating backwards in time. The range of the estimate is also within the range of the estimate for the oldest observed star in the universe.

<span class="mw-page-title-main">Lambda-CDM model</span> Model of Big Bang cosmology

The Lambda-CDM, Lambda cold dark matter, or ΛCDM model is a mathematical model of the Big Bang theory with three major components:

  1. a cosmological constant, denoted by lambda (Λ), associated with dark energy
  2. the postulated cold dark matter, denoted by CDM
  3. ordinary matter
<span class="mw-page-title-main">Inhomogeneous cosmology</span>

An inhomogeneous cosmology is a physical cosmological theory which, unlike the currently widely accepted cosmological concordance model, assumes that inhomogeneities in the distribution of matter across the universe affect local gravitational forces enough to skew our view of the Universe. When the universe began, matter was distributed homogeneously, but over billions of years, galaxies, clusters of galaxies, and superclusters have coalesced, and must, according to Einstein's theory of general relativity, warp the space-time around them. While the concordance model acknowledges this fact, it assumes that such inhomogeneities are not sufficient to affect large-scale averages of gravity in our observations. When two separate studies claimed in 1998-1999 that high redshift supernovae were further away than our calculations showed they should be, it was suggested that the expansion of the universe is accelerating, and dark energy, a repulsive energy inherent in space, was proposed to explain the acceleration. Dark energy has since become widely accepted, but it remains unexplained. Accordingly, some scientists continue to work on models that might not require dark energy. Inhomogeneous cosmology falls into this class.

<span class="mw-page-title-main">CMB cold spot</span> Region in space

The CMB Cold Spot or WMAP Cold Spot is a region of the sky seen in microwaves that has been found to be unusually large and cold relative to the expected properties of the cosmic microwave background radiation (CMBR). The "Cold Spot" is approximately 70 μK (0.00007 K) colder than the average CMB temperature, whereas the root mean square of typical temperature variations is only 18 μK. At some points, the "cold spot" is 140 μK colder than the average CMB temperature.

In physical cosmology, fractal cosmology is a set of minority cosmological theories which state that the distribution of matter in the Universe, or the structure of the universe itself, is a fractal across a wide range of scales. More generally, it relates to the usage or appearance of fractals in the study of the universe and matter. A central issue in this field is the fractal dimension of the universe or of matter distribution within it, when measured at very large or very small scales.

<span class="mw-page-title-main">Steady-state model</span> Model of the universe – alternative to the Big Bang model

In cosmology, the steady-state model or steady state theory is an alternative to the Big Bang theory. In the steady-state model, the density of matter in the expanding universe remains unchanged due to a continuous creation of matter, thus adhering to the perfect cosmological principle, a principle that says that the observable universe is always the same at any time and any place.

The "axis of evil" is a name given to the apparent correlation between the plane of the Solar System and aspects of the cosmic microwave background (CMB). It gives the plane of the Solar System and hence the location of Earth a greater significance than might be expected by chance – a result which has been claimed to be evidence of a departure from the Copernican principle as assumed in the concordance model.

References

  1. 1 2 3 Abdalla, Elcio; Abellán, Guillermo Franco; Aboubrahim, Armin (11 Mar 2022), "Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies", Journal of High Energy Astrophysics, 34: 49, arXiv: 2203.06142v1 , Bibcode:2022JHEAp..34...49A, doi:10.1016/j.jheap.2022.04.002, S2CID   247411131
  2. 1 2 Billings, Lee (April 15, 2020). "Do We Live in a Lopsided Universe?". Scientific American . Retrieved March 24, 2022.
  3. 1 2 Migkas, K.; Schellenberger, G.; Reiprich, T. H.; Pacaud, F.; Ramos-Ceja, M. E.; Lovisari, L. (8 April 2020). "Probing cosmic isotropy with a new X-ray galaxy cluster sample through the LX-T scaling relation". Astronomy & Astrophysics. 636 (April 2020): 42. arXiv: 2004.03305 . Bibcode:2020A&A...636A..15M. doi:10.1051/0004-6361/201936602. S2CID   215238834 . Retrieved 24 March 2022.
  4. Keel, William C. (2007). The Road to Galaxy Formation (2nd ed.). Springer-Praxis. p. 2. ISBN   978-3-540-72534-3.
  5. Liddle, Andrew (2003). An Introduction to Modern Cosmology (2nd ed.). John Wiley & Sons. p.  2. ISBN   978-0-470-84835-7.
  6. Ellis, G. F. R. (2009). "Dark energy and inhomogeneity". Journal of Physics: Conference Series. 189 (1): 012011. Bibcode:2009JPhCS.189a2011E. doi: 10.1088/1742-6596/189/1/012011 . S2CID   250670331.
  7. Colin, Jacques; Mohayaee, Roya; Rameez, Mohamed; Sarkar, Subir (20 November 2019). "Evidence for anisotropy of cosmic acceleration". Astronomy and Astrophysics. 631: L13. arXiv: 1808.04597 . Bibcode:2019A&A...631L..13C. doi:10.1051/0004-6361/201936373. S2CID   208175643 . Retrieved 25 March 2022.
  8. Redd, N. T. (2013). "What is Dark Energy?". space.com. Archived from the original on 19 May 2016. Retrieved 28 October 2018.
  9. Alexander Friedmann (1923). Die Welt als Raum und Zeit (The World as Space and Time). Ostwalds Klassiker der exakten Wissenschaften. ISBN   978-3-8171-3287-4. OCLC   248202523..
  10. Tropp, Ėduard Abramovich; Frenkel, Viktor Ya.; Chernin, Artur Davidovich (1993). Alexander A. Friedmann: The Man who Made the Universe Expand. Cambridge University Press. p. 219. ISBN   978-0-521-38470-4.
  11. Lemaître, Georges (1927). "Un univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques". Annales de la Société Scientifique de Bruxelles. A47 (5): 49–56. Bibcode:1927ASSB...47...49L.translated by A. S. Eddington : Lemaître, Georges (1931). "Expansion of the universe, A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulæ". Monthly Notices of the Royal Astronomical Society . 91 (5): 483–490. Bibcode:1931MNRAS..91..483L. doi: 10.1093/mnras/91.5.483 .
  12. Helge Kragh: "The most philosophically of all the sciences": Karl Popper and physical cosmology Archived 2013-07-20 at the Wayback Machine (2012)
  13. "Australian study backs major assumption of cosmology". 17 September 2012.
  14. "Simple but challenging: the Universe according to Planck". ESA Science & Technology . October 5, 2016 [March 21, 2013]. Retrieved October 29, 2016.
  15. Planck Collaboration; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bond, J. R. (2020-09-01). "Planck 2018 results. VII. Isotropy and statistics of the CMB". Astronomy and Astrophysics. 641: A7. arXiv: 1906.02552 . Bibcode:2020A&A...641A...7P. doi:10.1051/0004-6361/201935201. hdl: 10138/320318 . ISSN   0004-6361.
  16. Planck Collaboration; Aghanim, N.; Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battye, R.; Benabed, K.; Bernard, J. -P. (2020-09-01). "Planck 2018 results. I. Overview and the cosmological legacy of Planck". Astronomy and Astrophysics. 641: A1. arXiv: 1807.06205 . Bibcode:2020A&A...641A...1P. doi:10.1051/0004-6361/201833880. hdl: 10138/320876 . ISSN   0004-6361. S2CID   119185252.
  17. Saadeh D, Feeney SM, Pontzen A, Peiris HV, McEwen, JD (2016). "How Isotropic is the Universe?". Physical Review Letters. 117 (13): 131302. arXiv: 1605.07178 . Bibcode:2016PhRvL.117m1302S. doi:10.1103/PhysRevLett.117.131302. PMID   27715088. S2CID   453412.
  18. Secrest, Nathan J.; von Hausegger, Sebastian; Rameez, Mohamed; Mohayaee, Roya; Sarkar, Subir; Colin, Jacques (February 25, 2021). "A Test of the Cosmological Principle with Quasars". The Astrophysical Journal Letters. 908 (2): L51. arXiv: 2009.14826 . Bibcode:2021ApJ...908L..51S. doi: 10.3847/2041-8213/abdd40 . S2CID   222066749.
  19. Javanmardi, B.; Porciani, C.; Kroupa, P.; Pflamm-Altenburg, J. (August 27, 2015). "Probing the Isotropy of Cosmic Acceleration Traced By Type Ia Supernovae". The Astrophysical Journal Letters. 810 (1): 47. arXiv: 1507.07560 . Bibcode:2015ApJ...810...47J. doi:10.1088/0004-637X/810/1/47. S2CID   54958680 . Retrieved March 24, 2022.
  20. 1 2 Yadav, Jaswant; Bagla, J. S.; Khandai, Nishikanta (25 February 2010). "Fractal dimension as a measure of the scale of homogeneity". Monthly Notices of the Royal Astronomical Society. 405 (3): 2009–2015. arXiv: 1001.0617 . Bibcode:2010MNRAS.405.2009Y. doi: 10.1111/j.1365-2966.2010.16612.x . S2CID   118603499.
  21. Gott, J. Richard III; et al. (May 2005). "A Map of the Universe". The Astrophysical Journal. 624 (2): 463–484. arXiv: astro-ph/0310571 . Bibcode:2005ApJ...624..463G. doi:10.1086/428890. S2CID   9654355.
  22. Horvath, I.; Hakkila, J.; Bagoly, Z. (2013), The largest structure of the Universe, defined by Gamma-Ray Bursts, arXiv: 1311.1104
  23. Secrest, Nathan; von Hausegger, Sebastian; Rameez, Mohamed; Mohayaee, Roya; Sarkar, Subir; Colin, Jacques (2021-02-01). "A Test of the Cosmological Principle with Quasars". The Astrophysical Journal Letters. 908 (2): L51. arXiv: 2009.14826 . Bibcode:2021ApJ...908L..51S. doi: 10.3847/2041-8213/abdd40 . ISSN   2041-8205. S2CID   222066749.
  24. "Line of galaxies is so big it breaks our understanding of the universe".
  25. "A Big Cosmological Mystery". University of Central Lancashire. Retrieved 2024-01-15.
  26. Nadathur, Seshadri (2013). "Seeing patterns in noise: gigaparsec-scale 'structures' that do not violate homogeneity". Monthly Notices of the Royal Astronomical Society. 434 (1): 398–406. arXiv: 1306.1700 . Bibcode:2013MNRAS.434..398N. doi: 10.1093/mnras/stt1028 . S2CID   119220579.
  27. Sylos-Labini F, Tekhanovich D, Baryshev Y (2014). "Spatial density fluctuations and selection effects in galaxy redshift surveys". Journal of Cosmology and Astroparticle Physics. 7 (13): 35. arXiv: 1406.5899 . Bibcode:2014JCAP...07..035S. doi:10.1088/1475-7516/2014/07/035. S2CID   118393719.
  28. Secrest, Nathan; von Hausegger, Sebastian; Rameez, Mohamed; Mohayaee, Roya; Sarkar, Subir; Colin, Jacques (25 February 2021). "A Test of the Cosmological Principle with Quasars". The Astrophysical Journal. 908 (2): L51. arXiv: 2009.14826 . Bibcode:2021ApJ...908L..51S. doi: 10.3847/2041-8213/abdd40 . ISSN   2041-8213. S2CID   222066749.
  29. Siewert, Thilo M.; Schmidt-Rubart, Matthias; Schwarz, Dominik J. (2021). "Cosmic radio dipole: Estimators and frequency dependence". Astronomy & Astrophysics. 653: A9. arXiv: 2010.08366 . Bibcode:2021A&A...653A...9S. doi:10.1051/0004-6361/202039840. S2CID   223953708.
  30. Darling, Jeremy (2022-06-01). "The Universe is Brighter in the Direction of Our Motion: Galaxy Counts and Fluxes are Consistent with the CMB Dipole". The Astrophysical Journal. 931 (2): L14. arXiv: 2205.06880 . Bibcode:2022ApJ...931L..14D. doi: 10.3847/2041-8213/ac6f08 . ISSN   0004-637X.
  31. Singal, Ashok K. (2022). "Peculiar motion of Solar system from the Hubble diagram of supernovae Ia and its implications for cosmology". Monthly Notices of the Royal Astronomical Society. 515 (4): 5969–5980. arXiv: 2106.11968 . doi: 10.1093/mnras/stac1986 .
  32. Singal, Ashok K. (2022). "Solar system peculiar motion from the Hubble diagram of quasars and testing the cosmological principle". Monthly Notices of the Royal Astronomical Society. 511 (2): 1819–1829. arXiv: 2107.09390 . doi: 10.1093/mnras/stac144 .
  33. Hutsemekers, D.; Cabanac, R.; Lamy, H.; Sluse, D. (October 2005). "Mapping extreme-scale alignments of quasar polarization vectors". Astronomy & Astrophysics. 441 (3): 915–930. arXiv: astro-ph/0507274 . Bibcode:2005A&A...441..915H. doi:10.1051/0004-6361:20053337. ISSN   0004-6361. S2CID   14626666.
  34. Krishnan, Chethan; Mohayaee, Roya; Colgáin, Eoin Ó; Sheikh-Jabbari, M. M.; Yin, Lu (16 September 2021). "Does Hubble Tension Signal a Breakdown in FLRW Cosmology?". Classical and Quantum Gravity. 38 (18): 184001. arXiv: 2105.09790 . Bibcode:2021CQGra..38r4001K. doi:10.1088/1361-6382/ac1a81. ISSN   0264-9381. S2CID   234790314.
  35. Krishnan, Chethan; Mohayaee, Roya; Colgáin, Eoin Ó; Sheikh-Jabbari, M. M.; Yin, Lu (2022). "Hints of FLRW breakdown from supernovae". Physical Review D. 105 (6): 063514. arXiv: 2106.02532 . Bibcode:2022PhRvD.105f3514K. doi:10.1103/PhysRevD.105.063514. S2CID   235352881.
  36. Luongo, Orlando; Muccino, Marco; Colgáin, Eoin Ó; Sheikh-Jabbari, M. M.; Yin, Lu (2022). "Larger H0 values in the CMB dipole direction". Physical Review D. 105 (10): 103510. arXiv: 2108.13228 . Bibcode:2022PhRvD.105j3510L. doi:10.1103/PhysRevD.105.103510. S2CID   248713777.
  37. Planck Collaboration; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Benabed, K.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M. (2014-11-01). "Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove". Astronomy and Astrophysics. 571: A27. arXiv: 1303.5087 . Bibcode:2014A&A...571A..27P. doi:10.1051/0004-6361/201321556. hdl: 10138/233688 . ISSN   0004-6361. S2CID   5398329.
  38. Planck Collaboration; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bond, J. R. (2020-12-01). "Planck intermediate results. LVI. Detection of the CMB dipole through modulation of the thermal Sunyaev-Zeldovich effect: Eppur si muove II". Astronomy and Astrophysics. 644: A100. arXiv: 2003.12646 . Bibcode:2020A&A...644A.100P. doi:10.1051/0004-6361/202038053. hdl: 10138/324269 . ISSN   0004-6361. S2CID   214713774.
  39. Avila, Felipe; Oliveira, Jezebel; Dias, Mariana L. S.; Bernui, Armando (2023-02-01). "The bulk flow motion and the Hubble-Lemaître law in the Local Universe with the ALFALFA survey". Brazilian Journal of Physics. 53 (2): 49. arXiv: 2302.04978 . Bibcode:2023BrJPh..53...49A. doi:10.1007/s13538-023-01259-z. ISSN   0103-9733. S2CID   256631872.
  40. Hoffman, Yehuda; Pomarède, Daniel; Tully, R. Brent; Courtois, Hélène M. (2017-01-01). "The dipole repeller". Nature Astronomy. 1 (2): 0036. arXiv: 1702.02483 . Bibcode:2017NatAs...1E..36H. doi:10.1038/s41550-016-0036. ISSN   2397-3366. S2CID   7537393.
  41. Aguirre, Anthony & Gratton, Steven (2003). "Inflation without a beginning: A null boundary proposal". Physical Review D. 67 (8): 083515. arXiv: gr-qc/0301042 . Bibcode:2003PhRvD..67h3515A. doi:10.1103/PhysRevD.67.083515. S2CID   37260723.
  42. Aguirre, Anthony & Gratton, Steven (2002). "Steady-State Eternal Inflation". Physical Review D. 65 (8): 083507. arXiv: astro-ph/0111191 . Bibcode:2002PhRvD..65h3507A. doi:10.1103/PhysRevD.65.083507. S2CID   118974302.
  43. Gribbin, John. "Inflation for Beginners". Archived from the original on 2010-03-26. Retrieved 2017-02-01.