Observational cosmology

Last updated

Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors.

Contents

Early observations

The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Albert Einstein's General Theory of Relativity. In its infancy, cosmology was a speculative science based on a very limited number of observations and characterized by a dispute between steady state theorists and promoters of Big Bang cosmology. It was not until the 1990s and beyond that the astronomical observations would be able to eliminate competing theories and drive the science to the "Golden Age of Cosmology" which was heralded by David Schramm at a National Academy of Sciences colloquium in 1992. [1]

Hubble's law and the cosmic distance ladder

Distance measurements in astronomy have historically been and continue to be confounded by considerable measurement uncertainty. In particular, while stellar parallax can be used to measure the distance to nearby stars, the observational limits imposed by the difficulty in measuring the minuscule parallaxes associated with objects beyond our galaxy meant that astronomers had to look for alternative ways to measure cosmic distances. To this end, a standard candle measurement for Cepheid variables was discovered by Henrietta Swan Leavitt in 1908 which would provide Edwin Hubble with the rung on the cosmic distance ladder he would need to determine the distance to spiral nebula. Hubble used the 100-inch Hooker Telescope at Mount Wilson Observatory to identify individual stars in those galaxies, and determine the distance to the galaxies by isolating individual Cepheids. This firmly established the spiral nebula as being objects well outside the Milky Way galaxy. Determining the distance to "island universes", as they were dubbed in the popular media, established the scale of the universe and settled the Shapley-Curtis debate once and for all. [2]

The lookback time of extragalactic observations by their redshift up to z=20. Look-back time by redshift.png
The lookback time of extragalactic observations by their redshift up to z=20.

In 1927, by combining various measurements, including Hubble's distance measurements and Vesto Slipher's determinations of redshifts for these objects, Georges Lemaître was the first to estimate a constant of proportionality between galaxies' distances and what was termed their "recessional velocities", finding a value of about 600 km/s/Mpc. [4] [5] [6] [7] [8] [9] He showed that this was theoretically expected in a universe model based on general relativity. [4] Two years later, Hubble showed that the relation between the distances and velocities was a positive correlation and had a slope of about 500 km/s/Mpc. [10] This correlation would come to be known as Hubble's law and would serve as the observational foundation for the expanding universe theories on which cosmology is still based. The publication of the observations by Slipher, Wirtz, Hubble and their colleagues and the acceptance by the theorists of their theoretical implications in light of Einstein's General theory of relativity is considered the beginning of the modern science of cosmology. [11]

Nuclide abundances

Determination of the cosmic abundance of elements has a history dating back to early spectroscopic measurements of light from astronomical objects and the identification of emission and absorption lines which corresponded to particular electronic transitions in chemical elements identified on Earth. For example, the element Helium was first identified through its spectroscopic signature in the Sun before it was isolated as a gas on Earth. [12] [13]

Computing relative abundances was achieved through corresponding spectroscopic observations to measurements of the elemental composition of meteorites.

Detection of the cosmic microwave background

the CMB seen by WMAP WMAP 2012.png
the CMB seen by WMAP

A cosmic microwave background was predicted in 1948 by George Gamow and Ralph Alpher, and by Alpher and Robert Herman as due to the hot Big Bang model. Moreover, Alpher and Herman were able to estimate the temperature, [14] but their results were not widely discussed in the community. Their prediction was rediscovered by Robert Dicke and Yakov Zel'dovich in the early 1960s with the first published recognition of the CMB radiation as a detectable phenomenon appeared in a brief paper by Soviet astrophysicists A. G. Doroshkevich and Igor Novikov, in the spring of 1964. [15] In 1964, David Todd Wilkinson and Peter Roll, Dicke's colleagues at Princeton University, began constructing a Dicke radiometer to measure the cosmic microwave background. [16] In 1965, Arno Penzias and Robert Woodrow Wilson at the Crawford Hill location of Bell Telephone Laboratories in nearby Holmdel Township, New Jersey had built a Dicke radiometer that they intended to use for radio astronomy and satellite communication experiments. Their instrument had an excess 3.5 K antenna temperature which they could not account for. After receiving a telephone call from Crawford Hill, Dicke famously quipped: "Boys, we've been scooped." [17] A meeting between the Princeton and Crawford Hill groups determined that the antenna temperature was indeed due to the microwave background. Penzias and Wilson received the 1978 Nobel Prize in Physics for their discovery.

Modern observations

Today, observational cosmology continues to test the predictions of theoretical cosmology and has led to the refinement of cosmological models. For example, the observational evidence for dark matter has heavily influenced theoretical modeling of structure and galaxy formation. When trying to calibrate the Hubble diagram with accurate supernova standard candles, observational evidence for dark energy was obtained in the late 1990s. These observations have been incorporated into a six-parameter framework known as the Lambda-CDM model which explains the evolution of the universe in terms of its constituent material. This model has subsequently been verified by detailed observations of the cosmic microwave background, especially through the WMAP experiment.

Included here are the modern observational efforts that have directly influenced cosmology.

Redshift surveys

With the advent of automated telescopes and improvements in spectroscopes, a number of collaborations have been made to map the universe in redshift space. By combining redshift with angular position data, a redshift survey maps the 3D distribution of matter within a field of the sky. These observations are used to measure properties of the large-scale structure of the universe. The Great Wall, a vast supercluster of galaxies over 500 million light-years wide, provides a dramatic example of a large-scale structure that redshift surveys can detect. [18]

3D visualization of the dark matter distribution from the Hyper Suprime-Cam redshift survey on Subaru Telescope in 2018 HSCSDMmap2018.gif
3D visualization of the dark matter distribution from the Hyper Suprime-Cam redshift survey on Subaru Telescope in 2018

The first redshift survey was the CfA Redshift Survey, started in 1977 with the initial data collection completed in 1982. [20] More recently, the 2dF Galaxy Redshift Survey determined the large-scale structure of one section of the Universe, measuring z-values for over 220,000 galaxies; data collection was completed in 2002, and the final data set was released 30 June 2003. [21] (In addition to mapping large-scale patterns of galaxies, 2dF established an upper limit on neutrino mass.) Another notable investigation, the Sloan Digital Sky Survey (SDSS), is ongoing as of 2011 and aims to obtain measurements on around 100 million objects. [22] SDSS has recorded redshifts for galaxies as high as 0.4, and has been involved in the detection of quasars beyond z = 6. The DEEP2 Redshift Survey uses the Keck telescopes with the new "DEIMOS" spectrograph; a follow-up to the pilot program DEEP1, DEEP2 is designed to measure faint galaxies with redshifts 0.7 and above, and it is therefore planned to provide a complement to SDSS and 2dF. [23]

Cosmic microwave background experiments

The Holmdel Horn Antenna on which Penzias and Wilson discovered the cosmic microwave background. Horn Antenna-in Holmdel, New Jersey - restoration1.jpg
The Holmdel Horn Antenna on which Penzias and Wilson discovered the cosmic microwave background.
The first published recognition of the CMB radiation as a detectable phenomenon appeared in a brief paper by Soviet astrophysicists A. G. Doroshkevich and Igor Novikov, in the spring of 1964. [25] In 1964, David Todd Wilkinson and Peter Roll, Dicke's colleagues at Princeton University, began constructing a Dicke radiometer to measure the cosmic microwave background. [26] In 1964, Arno Penzias and Robert Woodrow Wilson at the Crawford Hill location of Bell Telephone Laboratories in nearby Holmdel Township, New Jersey had built a Dicke radiometer that they intended to use for radio astronomy and satellite communication experiments. The antenna was constructed in 1959 to support Project Echo—the National Aeronautics and Space Administration's passive communications satellites, which used large earth orbiting aluminized plastic balloons as reflectors to bounce radio signals from one point on the Earth to another. [24] On 20 May 1964 they made their first measurement clearly showing the presence of the microwave background, [27] with their instrument having an excess 4.2K antenna temperature which they could not account for. After receiving a telephone call from Crawford Hill, Dicke said "Boys, we've been scooped." [28] [29] [30] [31] :140 A meeting between the Princeton and Crawford Hill groups determined that the antenna temperature was indeed due to the microwave background. Penzias and Wilson received the 1978 Nobel Prize in Physics for their discovery. [32]
The interpretation of the cosmic microwave background was a controversial issue in the late 1960s. Alternative explanations included energy from within the solar system, from galaxies, from intergalactic plasma, from multiple extragalactic radio sources. Two requirements would show that the microwave radiation was truly "cosmic". First the intensity vs frequency or spectrum needed to be shown to match a thermal or blackbody source. This was accomplished by 1968 in a series of measurements of the radiation temperature at higher and lower wavelengths. Second the radiation needed be shown to be isotropic, the same from all directions. This was also accomplished by 1970, demonstrating that this radiation was truly cosmic in origin. [33]

In the 1970s numerous studies showed that tiny deviations from isotropy in the CMB could result from events in the early universe. [33] :8.5.1

Harrison, [34] Peebles and Yu, [35] and Zel'dovich [36] realized that the early universe would require quantum inhomogeneities that would result in temperature anisotropy at the level of 10−4 or 10−5. [33] :8.5.3.2 Rashid Sunyaev, using the alternative name relic radiation, calculated the observable imprint that these inhomogeneities would have on the cosmic microwave background. [37]

After a lull in the 1970s caused in part by the many experimental difficulties in measuring CMB at high precision, [33] :8.5.1 increasingly stringent limits on the anisotropy of the cosmic microwave background were set by ground-based experiments during the 1980s. RELIKT-1, a Soviet cosmic microwave background anisotropy experiment on board the Prognoz 9 satellite (launched 1 July 1983), gave the first upper limits on the large-scale anisotropy. [33] :8.5.3.2

The other key event in the 1980s was the proposal by Alan Guth for cosmic inflation. This theory of rapid spatial expansion gave an explanation for large-scale isotropy by allowing causal connection just before the epoch of last scattering. [33] :8.5.4 With this and similar theories, detailed prediction encouraged larger and more ambitious experiments.

The NASA Cosmic Background Explorer (COBE) satellite orbited Earth in 1989–1996 detected and quantified the large scale anisotropies at the limit of its detection capabilities.

The NASA COBE mission clearly confirmed the primary anisotropy with the Differential Microwave Radiometer instrument, publishing their findings in 1992. [38] [39] The team received the Nobel Prize in physics for 2006 for this discovery.
Inspired by the COBE results, a series of ground and balloon-based experiments measured cosmic microwave background anisotropies on smaller angular scales over the[ which? ] two decades. The sensitivity of the new experiments improved dramatically, with a reduction in internal noise by three orders of magnitude. [40] The primary goal of these experiments was to measure the scale of the first acoustic peak, which COBE did not have sufficient resolution to resolve. This peak corresponds to large scale density variations in the early universe that are created by gravitational instabilities, resulting in acoustical oscillations in the plasma. [41] The first peak in the anisotropy was tentatively detected by the MAT/TOCO experiment [42] and the result was confirmed by the BOOMERanG [43] and MAXIMA experiments. [44] These measurements demonstrated that the geometry of the universe is approximately flat, rather than curved. [45] They ruled out cosmic strings as a major component of cosmic structure formation and suggested cosmic inflation was the right theory of structure formation. [46]
Comparison of CMB results from COBE, WMAP and Planck
(March 21, 2013) PIA16874-CobeWmapPlanckComparison-20130321.jpg
Comparison of CMB results from COBE, WMAP and Planck
(March 21, 2013)

Inspired by the initial COBE results of an extremely isotropic and homogeneous background, a series of ground- and balloon-based experiments quantified CMB anisotropies on smaller angular scales over the next decade. The primary goal of these experiments was to measure the angular scale of the first acoustic peak, for which COBE did not have sufficient resolution. These measurements were able to rule out cosmic strings as the leading theory of cosmic structure formation, and suggested cosmic inflation was the right theory.

During the 1990s, the first peak was measured with increasing sensitivity and by 2000 the BOOMERanG experiment reported that the highest power fluctuations occur at scales of approximately one degree. Together with other cosmological data, these results implied that the geometry of the universe is flat. A number of ground-based interferometers provided measurements of the fluctuations with higher accuracy over the next three years, including the Very Small Array, Degree Angular Scale Interferometer (DASI), and the Cosmic Background Imager (CBI). DASI made the first detection of the polarization of the CMB and the CBI provided the first E-mode polarization spectrum with compelling evidence that it is out of phase with the T-mode spectrum.

Telescope observations

Radio

The brightest sources of low-frequency radio emission (10 MHz and 100 GHz) are radio galaxies which can be observed out to extremely high redshifts. These are subsets of the active galaxies that have extended features known as lobes and jets which extend away from the galactic nucleus distances on the order of megaparsecs. Because radio galaxies are so bright, astronomers have used them to probe extreme distances and early times in the evolution of the universe.

Infrared

Far infrared observations including submillimeter astronomy have revealed a number of sources at cosmological distances. With the exception of a few atmospheric windows, most of infrared light is blocked by the atmosphere, so the observations generally take place from balloon or space-based instruments. Current observational experiments in the infrared include NICMOS, the Cosmic Origins Spectrograph, the Spitzer Space Telescope, the Keck Interferometer, the Stratospheric Observatory For Infrared Astronomy, and the Herschel Space Observatory. The next large space telescope planned by NASA, the James Webb Space Telescope will also explore in the infrared.

An additional infrared survey, the Two-Micron All Sky Survey, has also been very useful in revealing the distribution of galaxies, similar to other optical surveys described below.

Optical rays (visible to human eyes)

Optical light is still the primary means by which astronomy occurs, and in the context of cosmology, this means observing distant galaxies and galaxy clusters in order to learn about the large scale structure of the Universe as well as galaxy evolution. Redshift surveys have been a common means by which this has been accomplished with some of the most famous including the 2dF Galaxy Redshift Survey, the Sloan Digital Sky Survey, and the upcoming Large Synoptic Survey Telescope. These optical observations generally use either photometry or spectroscopy to measure the redshift of a galaxy and then, via Hubble's law, determine its distance modulo redshift distortions due to peculiar velocities. Additionally, the position of the galaxies as seen on the sky in celestial coordinates can be used to gain information about the other two spatial dimensions.

Very deep observations (which is to say sensitive to dim sources) are also useful tools in cosmology. The Hubble Deep Field, Hubble Ultra Deep Field, Hubble Extreme Deep Field, and Hubble Deep Field South are all examples of this.

Ultraviolet

See Ultraviolet astronomy.

X-rays

See X-ray astronomy.

Gamma-rays

See Gamma-ray astronomy.

Cosmic ray observations

See Cosmic-ray observatory.

Future observations

Cosmic neutrinos

It is a prediction of the Big Bang model that the universe is filled with a neutrino background radiation, analogous to the cosmic microwave background radiation. The microwave background is a relic from when the universe was about 380,000 years old, but the neutrino background is a relic from when the universe was about two seconds old.

If this neutrino radiation could be observed, it would be a window into very early stages of the universe. Unfortunately, these neutrinos would now be very cold, and so they are effectively impossible to observe directly.

Gravitational waves

See also

Related Research Articles

<span class="mw-page-title-main">Big Bang</span> Physical theory

The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. The notion of an expanding universe was first scientifically originated by physicist Alexander Friedmann in 1922 with the mathematical derivation of the Friedmann equations.

<span class="mw-page-title-main">Physical cosmology</span> Branch of cosmology which studies mathematical models of the universe

Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fundamental questions about its origin, structure, evolution, and ultimate fate. Cosmology as a science originated with the Copernican principle, which implies that celestial bodies obey identical physical laws to those on Earth, and Newtonian mechanics, which first allowed those physical laws to be understood.

<span class="mw-page-title-main">Cosmic microwave background</span> Trace radiation from the early universe

The cosmic microwave background, or relic radiation, is microwave radiation that fills all space in the observable universe. With a standard optical telescope, the background space between stars and galaxies is almost completely dark. However, a sufficiently sensitive radio telescope detects a faint background glow that is almost uniform and is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum. The accidental discovery of the CMB in 1965 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s.

<span class="mw-page-title-main">Redshift</span> Change of wavelength in photons during travel

In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation. The opposite change, a decrease in wavelength and increase in frequency and energy, is known as a blueshift, or negative redshift. The terms derive from the colours red and blue which form the extremes of the visible light spectrum. The main causes of electromagnetic redshift in astronomy and cosmology are the relative motions of radiation sources, which give rise to the relativistic Doppler effect, and gravitational potentials, which gravitationally redshift escaping radiation. All sufficiently distant light sources show cosmological redshift corresponding to recession speeds proportional to their distances from Earth, a fact known as Hubble's law that implies the universe is expanding.

<span class="mw-page-title-main">Hubble's law</span> Observation in physical cosmology

Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving away from Earth. The velocity of the galaxies has been determined by their redshift, a shift of the light they emit toward the red end of the visible light spectrum. The discovery of Hubble's law is attributed to Edwin Hubble's work published in 1929.

<span class="mw-page-title-main">Wilkinson Microwave Anisotropy Probe</span> NASA satellite of the Explorer program

The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe, was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic microwave background (CMB) – the radiant heat remaining from the Big Bang. Headed by Professor Charles L. Bennett of Johns Hopkins University, the mission was developed in a joint partnership between the NASA Goddard Space Flight Center and Princeton University. The WMAP spacecraft was launched on 30 June 2001 from Florida. The WMAP mission succeeded the COBE space mission and was the second medium-class (MIDEX) spacecraft in the NASA Explorer program. In 2003, MAP was renamed WMAP in honor of cosmologist David Todd Wilkinson (1935–2002), who had been a member of the mission's science team. After nine years of operations, WMAP was switched off in 2010, following the launch of the more advanced Planck spacecraft by European Space Agency (ESA) in 2009.

<span class="mw-page-title-main">Cosmic Background Explorer</span> NASA satellite of the Explorer program

The Cosmic Background Explorer, also referred to as Explorer 66, was a NASA satellite dedicated to cosmology, which operated from 1989 to 1993. Its goals were to investigate the cosmic microwave background radiation of the universe and provide measurements that would help shape our understanding of the cosmos.

<span class="mw-page-title-main">Observable universe</span> All of space observable from the Earth at the present

The observable universe is a ball-shaped region of the universe consisting of all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time; the electromagnetic radiation from these objects has had time to reach the Solar System and Earth since the beginning of the cosmological expansion. Initially, it was estimated that there may be 2 trillion galaxies in the observable universe. That number was reduced in 2021 to several hundred billion based on data from New Horizons. Assuming the universe is isotropic, the distance to the edge of the observable universe is roughly the same in every direction. That is, the observable universe is a spherical region centered on the observer. Every location in the universe has its own observable universe, which may or may not overlap with the one centered on Earth.

<span class="mw-page-title-main">Sunyaev–Zeldovich effect</span> Spectral distortion of cosmic microwave background in galaxy clusters

The Sunyaev–Zeldovich effect is the spectral distortion of the cosmic microwave background (CMB) through inverse Compton scattering by high-energy electrons in galaxy clusters, in which the low-energy CMB photons receive an average energy boost during collision with the high-energy cluster electrons. Observed distortions of the cosmic microwave background spectrum are used to detect the disturbance of density in the universe. Using the Sunyaev–Zeldovich effect, dense clusters of galaxies have been observed.

<span class="mw-page-title-main">Discovery of cosmic microwave background radiation</span> Aspect of the history of modern physical cosmology

The discovery of cosmic microwave background radiation constitutes a major development in modern physical cosmology. In 1964, US physicist Arno Allan Penzias and radio-astronomer Robert Woodrow Wilson discovered the cosmic microwave background (CMB), estimating its temperature as 3.5 K, as they experimented with the Holmdel Horn Antenna. The new measurements were accepted as important evidence for a hot early Universe and as evidence against the rival steady state theory as theoretical work around 1950 showed the need for a CMB for consistency with the simplest relativistic universe models. In 1978, Penzias and Wilson were awarded the Nobel Prize for Physics for their joint measurement. There had been a prior measurement of the cosmic background radiation (CMB) by Andrew McKellar in 1941 at an effective temperature of 2.3 K using CN stellar absorption lines observed by W. S. Adams. Although no reference to the CMB is made by McKellar, it was not until much later after the Penzias and Wilson measurements that the significance of this measurement was understood.

<span class="mw-page-title-main">Age of the universe</span> Time elapsed since the Big Bang

In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe: a measurement based on direct observations of an early state of the universe, which indicate an age of 13.787±0.020 billion years as interpreted with the Lambda-CDM concordance model as of 2021; and a measurement based on the observations of the local, modern universe, which suggest a younger age. The uncertainty of the first kind of measurement has been narrowed down to 20 million years, based on a number of studies that all show similar figures for the age. These studies include researches of the microwave background radiation by the Planck spacecraft, the Wilkinson Microwave Anisotropy Probe and other space probes. Measurements of the cosmic background radiation give the cooling time of the universe since the Big Bang, and measurements of the expansion rate of the universe can be used to calculate its approximate age by extrapolating backwards in time. The range of the estimate is also within the range of the estimate for the oldest observed star in the universe.

<span class="mw-page-title-main">Lambda-CDM model</span> Model of Big Bang cosmology

The Lambda-CDM, Lambda cold dark matter, or ΛCDM model is a mathematical model of the Big Bang theory with three major components:

  1. a cosmological constant, denoted by lambda (Λ), associated with dark energy
  2. the postulated cold dark matter, denoted by CDM
  3. ordinary matter
<span class="mw-page-title-main">History of the Big Bang theory</span> History of a cosmological theory

The history of the Big Bang theory began with the Big Bang's development from observations and theoretical considerations. Much of the theoretical work in cosmology now involves extensions and refinements to the basic Big Bang model. The theory itself was originally formalised by Father Georges Lemaître in 1927. Hubble's law of the expansion of the universe provided foundational support for the theory.

<span class="mw-page-title-main">George Smoot</span> American astrophysicist and cosmologist

George Fitzgerald Smoot III is an American astrophysicist, cosmologist, Nobel laureate, and the second contestant to win the $1 million prize on Are You Smarter than a 5th Grader? He won the Nobel Prize in Physics in 2006 for his work on the Cosmic Background Explorer with John C. Mather that led to the "discovery of the black body form and anisotropy of the cosmic microwave background radiation".

<span class="mw-page-title-main">Charles L. Bennett</span> American astronomer

Charles L. Bennett is an American observational astrophysicist. He is a Bloomberg Distinguished Professor, the Alumni Centennial Professor of Physics and Astronomy and a Gilman Scholar at Johns Hopkins University. He is the Principal Investigator of NASA's highly successful Wilkinson Microwave Anisotropy Probe (WMAP).

The Saskatoon experiment was a ground-based telescope experiment to measure the anisotropy of the cosmic microwave background (CMB) at multipole moments between 60 and 360. It was named after Saskatoon, Saskatchewan, Canada, where the experiment took place, occurring in the Canadian winters of 1993 to 1995.

<span class="mw-page-title-main">Dark energy</span> Energy driving the accelerated expansion of the universe

In physical cosmology and astronomy, dark energy is a proposed form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. Assuming that the lambda-CDM model of cosmology is correct, dark energy dominates the universe, contributing 68% of the total energy in the present-day observable universe while dark matter and ordinary (baryonic) matter contribute 26% and 5%, respectively, and other components such as neutrinos and photons are nearly negligible. Dark energy's density is very low: 7×10−30 g/cm3, much less than the density of ordinary matter or dark matter within galaxies. However, it dominates the universe's mass–energy content because it is uniform across space.

<span class="mw-page-title-main">Baryon acoustic oscillations</span> Fluctuations in the density of the normal matter of the universe

In cosmology, baryon acoustic oscillations (BAO) are fluctuations in the density of the visible baryonic matter of the universe, caused by acoustic density waves in the primordial plasma of the early universe. In the same way that supernovae provide a "standard candle" for astronomical observations, BAO matter clustering provides a "standard ruler" for length scale in cosmology. The length of this standard ruler is given by the maximum distance the acoustic waves could travel in the primordial plasma before the plasma cooled to the point where it became neutral atoms, which stopped the expansion of the plasma density waves, "freezing" them into place. The length of this standard ruler can be measured by looking at the large scale structure of matter using astronomical surveys. BAO measurements help cosmologists understand more about the nature of dark energy by constraining cosmological parameters.

<span class="mw-page-title-main">Hubble bubble (astronomy)</span> Variation in the Hubble constant

In astronomy, a Hubble bubble would be "a departure of the local value of the Hubble constant from its globally averaged value," or, more technically, "a local monopole in the peculiar velocity field, perhaps caused by a local void in the mass density."

<span class="mw-page-title-main">Cosmic microwave background spectral distortions</span> Fluctuations in the energy spectrum of the microwave background

CMB spectral distortions are tiny departures of the average cosmic microwave background (CMB) frequency spectrum from the predictions given by a perfect black body. They can be produced by a number of standard and non-standard processes occurring at the early stages of cosmic history, and therefore allow us to probe the standard picture of cosmology. Importantly, the CMB frequency spectrum and its distortions should not be confused with the CMB anisotropy power spectrum, which relates to spatial fluctuations of the CMB temperature in different directions of the sky.

References

  1. Arthur M. Sackler Colloquia of the National Academy of Sciences: Physical Cosmology; Irvine, California: March 27–28, 1992.
  2. "Island universe" is a reference to speculative ideas promoted by a variety of scholastic thinkers in the 18th and 19th centuries. The most famous early proponent of such ideas was philosopher Immanuel Kant who published a number of treatises on astronomy in addition to his more famous philosophical works. See Kant, I., 1755. Allgemeine Naturgeschichte und Theorie des Himmels, Part I, J.F. Peterson, Königsberg and Leipzig.
  3. S.V. Pilipenko (2013-2021) "Paper-and-pencil cosmological calculator" arxiv:1303.5961, including Fortran-90 code upon which the citing chart is based.
  4. 1 2 Lemaître, G. (1927). "Un univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques". Annales de la Société Scientifique de Bruxelles A . 47: 49–56. Bibcode:1927ASSB...47...49L. Partially translated in Lemaître, G. (1931). "Expansion of the universe, A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae". Monthly Notices of the Royal Astronomical Society . 91 (5): 483–490. Bibcode:1931MNRAS..91..483L. doi: 10.1093/mnras/91.5.483 .
  5. van den Bergh, S. (2011). "The Curious Case of Lemaitre's Equation No. 24". Journal of the Royal Astronomical Society of Canada . 105 (4): 151. arXiv: 1106.1195 . Bibcode:2011JRASC.105..151V.
  6. Block, D. L. (2012). "Georges Lemaître and Stigler's Law of Eponymy". In Holder, R. D.; Mitton, S. (eds.). Georges Lemaître: Life, Science and Legacy. Astrophysics and Space Science Library. Vol. 395. pp. 89–96. arXiv: 1106.3928 . Bibcode:2012ASSL..395...89B. doi:10.1007/978-3-642-32254-9_8. ISBN   978-3-642-32253-2. S2CID   119205665.
  7. Reich, E. S. (27 June 2011). "Edwin Hubble in translation trouble". Nature News . doi:10.1038/news.2011.385.
  8. Livio, M. (2011). "Lost in translation: Mystery of the missing text solved". Nature . 479 (7372): 171–173. Bibcode:2011Natur.479..171L. doi: 10.1038/479171a . PMID   22071745. S2CID   203468083.
  9. Livio, M.; Riess, A. (2013). "Measuring the Hubble constant". Physics Today . 66 (10): 41. Bibcode:2013PhT....66j..41L. doi:10.1063/PT.3.2148.
  10. Hubble, E. (1929). "A relation between distance and radial velocity among extra-galactic nebulae". Proceedings of the National Academy of Sciences . 15 (3): 168–73. Bibcode:1929PNAS...15..168H. doi: 10.1073/pnas.15.3.168 . PMC   522427 . PMID   16577160.
  11. This popular consideration is echoed in Time Magazine's listing for Edwin Hubble in their Time 100 list of most influential people of the 20th century. Michael Lemonick recounts, "He discovered the cosmos, and in doing so founded the science of cosmology."
  12. The Encyclopedia of the Chemical Elements, page 256
  13. Oxford English Dictionary (1989), s.v. "helium". Retrieved December 16, 2006, from Oxford English Dictionary Online. Also, from quotation there: Thomson, W. (1872). Rep. Brit. Assoc. xcix: "Frankland and Lockyer find the yellow prominences to give a very decided bright line not far from D, but hitherto not identified with any terrestrial flame. It seems to indicate a new substance, which they propose to call Helium."
  14. Gamow, G. (1948). "The Origin of Elements and the Separation of Galaxies". Physical Review. 74 (4): 505. Bibcode:1948PhRv...74..505G. doi:10.1103/physrev.74.505.2.Gamow, G. (1948). "The evolution of the universe". Nature. 162 (4122): 680–2. Bibcode:1948Natur.162..680G. doi:10.1038/162680a0. PMID   18893719. S2CID   4793163.Alpher, R. A.; Herman, R. (1948). "On the Relative Abundance of the Elements". Physical Review. 74 (11): 1577. Bibcode:1948PhRv...74.1577A. doi:10.1103/physrev.74.1577.
  15. A. A. Penzias (1979). "The origin of elements". Nobel lecture . 205 (4406): 549–54. Bibcode:1979Sci...205..549P. doi:10.1126/science.205.4406.549. PMID   17729659 . Retrieved October 4, 2006.
  16. R. H. Dicke, "The measurement of thermal radiation at microwave frequencies", Rev. Sci. Instrum.17, 268 (1946). This basic design for a radiometer has been used in most subsequent cosmic microwave background experiments.
  17. A. A. Penzias and R. W. Wilson, "A Measurement of Excess Antenna Temperature at 4080 Mc/s," Astrophysical Journal142 (1965), 419. R. H. Dicke, P. J. E. Peebles, P. G. Roll and D. T. Wilkinson, "Cosmic Black-Body Radiation," Astrophysical Journal142 (1965), 414. The history is given in P. J. E. Peebles, Principles of physical cosmology (Princeton Univ. Pr., Princeton 1993).
  18. Geller, M. J.; Huchra, J. P. (1989), "Mapping the Universe", Science, 246 (4932): 897–903, Bibcode:1989Sci...246..897G, doi:10.1126/science.246.4932.897, PMID   17812575, S2CID   31328798
  19. Duffy, Jocelyn (October 2, 2018). "Hyper Suprime-Cam Survey Maps Dark Matter in the Universe". Carnegie Mellon University. Archived from the original on April 12, 2022. Retrieved December 7, 2022.
  20. See the official CfA website for more details.
  21. Shaun Cole; et al. (The 2dFGRS Collaboration) (2005). "The 2dF galaxy redshift survey: Power-spectrum analysis of the final dataset and cosmological implications". Mon. Not. R. Astron. Soc. 362 (2): 505–34. arXiv: astro-ph/0501174 . Bibcode:2005MNRAS.362..505C. doi: 10.1111/j.1365-2966.2005.09318.x . S2CID   6906627.{{cite journal}}: CS1 maint: numeric names: authors list (link) 2dF Galaxy Redshift Survey homepage Archived 2007-02-05 at the Wayback Machine
  22. SDSS Homepage
  23. Marc Davis; et al. (DEEP2 collaboration) (2002). "Science objectives and early results of the DEEP2 redshift survey". Conference on Astronomical Telescopes and Instrumentation, Waikoloa, Hawaii, 22–28 August 2002. arXiv: astro-ph/0209419 .{{cite conference}}: CS1 maint: numeric names: authors list (link)
  24. 1 2 Overbye, Dennis (5 September 2023). "Back to New Jersey, Where the Universe Began - A half-century ago, a radio telescope in Holmdel, N.J., sent two astronomers 13.8 billion years back in time — and opened a cosmic window that scientists have been peering through ever since". The New York Times . Archived from the original on 5 September 2023. Retrieved 5 September 2023.
  25. Penzias, A. A. (2006). "The origin of elements" (PDF). Science. 205 (4406). Nobel Foundation: 549–54. doi:10.1126/science.205.4406.549. PMID   17729659. Archived (PDF) from the original on 2006-09-25. Retrieved 2006-10-04.
  26. Dicke, R. H. (1946). "The Measurement of Thermal Radiation at Microwave Frequencies". Review of Scientific Instruments . 17 (7): 268–275. Bibcode:1946RScI...17..268D. doi: 10.1063/1.1770483 . PMID   20991753. S2CID   26658623. This basic design for a radiometer has been used in most subsequent cosmic microwave background experiments.
  27. "The Cosmic Microwave Background Radiation (Nobel Lecture) by Robert Wilson 8 Dec 1978, p. 474" (PDF).
  28. Penzias, A. A.; Wilson, R. W. (1965). "A Measurement of Excess Antenna Temperature at 4080 Mc/s". The Astrophysical Journal . 142 (1): 419–421. Bibcode:1965ApJ...142..419P. doi: 10.1086/148307 .
  29. Smoot Group (28 March 1996). "The Cosmic Microwave Background Radiation". Lawrence Berkeley Lab . Retrieved 2008-12-11.
  30. Dicke, R. H.; et al. (1965). "Cosmic Black-Body Radiation". Astrophysical Journal . 142: 414–419. Bibcode:1965ApJ...142..414D. doi:10.1086/148306.
  31. Peebles, P. J. E (1993). Principles of Physical Cosmology. Princeton University Press. pp.  139–148. ISBN   978-0-691-01933-8.
  32. "The Nobel Prize in Physics 1978". Nobel Foundation. 1978. Retrieved 2009-01-08.
  33. 1 2 3 4 5 6 Partridge, R. Bruce (2019-04-04). "The cosmic microwave background: from discovery to precision cosmology". In Kragh, Helge; Longair, Malcolm S. (eds.). The Oxford Handbook of the History of Modern Cosmology (1 ed.). Oxford University Press. pp. 292–345. doi:10.1093/oxfordhb/9780198817666.013.8. ISBN   978-0-19-881766-6.
  34. Harrison, E. R. (1970). "Fluctuations at the threshold of classical cosmology". Physical Review D . 1 (10): 2726–2730. Bibcode:1970PhRvD...1.2726H. doi:10.1103/PhysRevD.1.2726.
  35. Peebles, P. J. E.; Yu, J. T. (1970). "Primeval Adiabatic Perturbation in an Expanding Universe". Astrophysical Journal . 162: 815–836. Bibcode:1970ApJ...162..815P. doi:10.1086/150713.
  36. Zeldovich, Y. B. (1972). "A hypothesis, unifying the structure and the entropy of the Universe". Monthly Notices of the Royal Astronomical Society . 160: 1P–4P. Bibcode:1972MNRAS.160P...1Z. doi: 10.1093/mnras/160.1.1P .
  37. Sunyaev RA; Zel'dovich YB (1970). "Small-scale fluctuations of relic radiation". Astrophys. Space Sci. 7 (1): 3–19. Bibcode:1970Ap&SS...7....3S. doi:10.1007/BF00653471. S2CID   117050217.
  38. Smoot, G. F.; et al. (1992). "Structure in the COBE differential microwave radiometer first-year maps". Astrophysical Journal Letters . 396 (1): L1–L5. Bibcode:1992ApJ...396L...1S. doi: 10.1086/186504 . S2CID   120701913.
  39. Bennett, C.L.; et al. (1996). "Four-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results". Astrophysical Journal Letters . 464: L1–L4. arXiv: astro-ph/9601067 . Bibcode:1996ApJ...464L...1B. doi:10.1086/310075. S2CID   18144842.
  40. Komatsu, Eiichiro (2022-05-18). "New physics from the polarized light of the cosmic microwave background". Nature Reviews Physics. 4 (7): 452–469. arXiv: 2202.13919 . Bibcode:2022NatRP...4..452K. doi:10.1038/s42254-022-00452-4. ISSN   2522-5820.
  41. Grupen, C.; et al. (2005). Astroparticle Physics. Springer. pp. 240–241. ISBN   978-3-540-25312-9.
  42. Miller, A. D.; et al. (1999). "A Measurement of the Angular Power Spectrum of the Microwave Background Made from the High Chilean Andes". Astrophysical Journal . 521 (2): L79–L82. arXiv: astro-ph/9905100 . Bibcode:1999ApJ...521L..79T. doi:10.1086/312197. S2CID   16534514.
  43. Melchiorri, A.; et al. (2000). "A Measurement of Ω from the North American Test Flight of Boomerang". The Astrophysical Journal Letters . 536 (2): L63–L66. arXiv: astro-ph/9911445 . Bibcode:2000ApJ...536L..63M. doi:10.1086/312744. PMID   10859119. S2CID   27518923.
  44. Hanany, S.; et al. (2000). "MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10'–5°". Astrophysical Journal . 545 (1): L5–L9. arXiv: astro-ph/0005123 . Bibcode:2000ApJ...545L...5H. doi:10.1086/317322. S2CID   119495132.
  45. de Bernardis, P.; et al. (2000). "A flat Universe from high-resolution maps of the cosmic microwave background radiation". Nature . 404 (6781): 955–959. arXiv: astro-ph/0004404 . Bibcode:2000Natur.404..955D. doi:10.1038/35010035. hdl:10044/1/60851. PMID   10801117. S2CID   4412370.
  46. Pogosian, L.; et al. (2003). "Observational constraints on cosmic string production during brane inflation". Physical Review D . 68 (2): 023506. arXiv: hep-th/0304188 . Bibcode:2003PhRvD..68b3506P. doi:10.1103/PhysRevD.68.023506.