Steady-state model

Last updated
In the Big Bang, the expanding Universe causes matter to dilute over time, while in the Steady-State Theory, continued matter creation ensures that the density remains constant over time. Big Bang and Steady-State Theory.png
In the Big Bang , the expanding Universe causes matter to dilute over time, while in the Steady-State Theory, continued matter creation ensures that the density remains constant over time.

In cosmology, the steady-state model or steady state theory is an alternative to the Big Bang theory. In the steady-state model, the density of matter in the expanding universe remains unchanged due to a continuous creation of matter, thus adhering to the perfect cosmological principle, a principle that says that the observable universe is always the same at any time and any place.

Contents

From the 1940s to the 1960s, the astrophysical community was divided between supporters of the Big Bang theory and supporters of the steady-state theory. The steady-state model is now rejected by most cosmologists, astrophysicists, and astronomers. [1] The observational evidence points to a hot Big Bang cosmology with a finite age of the universe, which the steady-state model does not predict. [2]

History

Cosmological expansion was originally seen through observations by Edwin Hubble. Theoretical calculations also showed that the static universe, as modeled by Albert Einstein (1917), was unstable. The modern Big Bang theory, first advanced by Father Georges Lemaître, is one in which the universe has a finite age and has evolved over time through cooling, expansion, and the formation of structures through gravitational collapse.

On the other hand, the steady-state model says while the universe is expanding, it nevertheless does not change its appearance over time (the perfect cosmological principle). E.g., the universe has no beginning and no end. This required that matter be continually created in order to keep the universe's density from decreasing. Influential papers on the topic of a steady-state cosmology were published by Hermann Bondi, Thomas Gold, and Fred Hoyle in 1948. [3] [4] Similar models had been proposed earlier by William Duncan MacMillan, among others. [5]

It is now known that Albert Einstein considered a steady-state model of the expanding universe, as indicated in a 1931 manuscript, many years before Hoyle, Bondi and Gold. However, Einstein abandoned the idea. [6]

Observational tests

Counts of radio sources

Problems with the steady-state model began to emerge in the 1950s and 60s – observations supported the idea that the universe was in fact changing. Bright radio sources (quasars and radio galaxies) were found only at large distances (therefore could have existed only in the distant past due to the effects of the speed of light on astronomy), not in closer galaxies. Whereas the Big Bang theory predicted as much, the steady-state model predicted that such objects would be found throughout the universe, including close to our own galaxy. By 1961, statistical tests based on radio-source surveys [7] had ruled out the steady-state model in the minds of most cosmologists, although some proponents of the astronomers like Halton Arp insist that the radio data were suspect. [1] :384

X-ray background

Gold and Hoyle (1959) [8] considered that matter that is newly created exists in a region that is denser than the average density of the universe. This matter then may radiate and cool faster than the surrounding regions, resulting in a pressure gradient. This gradient would push matter into an over-dense region and result in a thermal instability and emit a large amount of plasma. However, Gould and Burbidge (1963) [9] realized that the thermal bremsstrahlung radiation emitted by such a plasma would exceed the amount of observed X-rays. Therefore, in the steady-state cosmological model, thermal instability does not appear to be important in the formation of galaxy-sized masses. [10]

Cosmic microwave background

For most cosmologists, the refutation of the steady-state model came with the discovery of the cosmic microwave background radiation in 1964, which was predicted by the Big Bang theory. The steady-state model explained microwave background radiation as the result of light from ancient stars that has been scattered by galactic dust. However, the cosmic microwave background level is very even in all directions, making it difficult to explain how it could be generated by numerous point sources, and the microwave background radiation shows no evidence of characteristics such as polarization that are normally associated with scattering. Furthermore, its spectrum is so close to that of an ideal black body that it could hardly be formed by the superposition of contributions from a multitude of dust clumps at different temperatures as well as at different redshifts. Steven Weinberg wrote in 1972: "The steady state model does not appear to agree with the observed dL versus z relation or with source counts ... In a sense, this disagreement is a credit to the model; alone among all cosmologies, the steady state model makes such definite predictions that it can be disproved even with the limited observational evidence at our disposal. The steady state model is so attractive that many of its adherents still retain hope that the evidence against it will eventually disappear as observations improve. However, if the cosmic microwave radiation ... is really black-body radiation, it will be difficult to doubt that the universe has evolved from a hotter denser early stage." [11]

Since this discovery, the Big Bang theory has been considered to provide the best explanation of the origin of the universe. In most astrophysical publications, the Big Bang is implicitly accepted and is used as the basis of more complete theories. [12] :388

Quasi-steady state

Quasi-steady-state cosmology (QSS) was proposed in 1993 by Fred Hoyle, Geoffrey Burbidge, and Jayant V. Narlikar as a new incarnation of the steady-state ideas meant to explain additional features unaccounted for in the initial proposal. The model suggests pockets of creation occurring over time within the universe, sometimes referred to as minibangs,mini-creation events, or little bangs. [13] After the observation of an accelerating universe, further modifications of the model were made. [14] The Planck particle is a hypothetical black hole whose Schwarzschild radius is approximately the same as its Compton wavelength; the evaporation of such a particle has been evoked as the source of light elements in an expanding steady-state universe. [15]

Astrophysicist and cosmologist Ned Wright has pointed out flaws in the model. [16] These first comments were soon rebutted by the proponents. [17] Wright and other mainstream cosmologists reviewing QSS have pointed out new flaws and discrepancies with observations left unexplained by proponents. [18]

See also

Related Research Articles

<span class="mw-page-title-main">Big Bang</span> Physical theory

The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. The notion of an expanding universe was first scientifically originated by physicist Alexander Friedmann in 1922 with the mathematical derivation of the Friedmann equations. The earliest empirical observation of the notion of an expanding universe is known as Hubble's law, published in work by physicist Edwin Hubble in 1929, which discerned that galaxies are moving away from Earth at a rate that accelerates proportionally with distance. Independent of Friedmann's work, and independent of Hubble's observations, physicist Georges Lemaître proposed that the universe emerged from a "primeval atom" in 1931, introducing the modern notion of the Big Bang.

<span class="mw-page-title-main">Physical cosmology</span> Branch of cosmology which studies mathematical models of the universe

Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fundamental questions about its origin, structure, evolution, and ultimate fate. Cosmology as a science originated with the Copernican principle, which implies that celestial bodies obey identical physical laws to those on Earth, and Newtonian mechanics, which first allowed those physical laws to be understood.

<span class="mw-page-title-main">Copernican principle</span> Principle that humans are not privileged observers of the universe

In physical cosmology, the Copernican principle states that humans are not privileged observers of the universe, that observations from the Earth are representative of observations from the average position in the universe. Named for Copernican heliocentrism, it is a working assumption that arises from a modified cosmological extension of Copernicus' argument of a moving Earth.

<span class="mw-page-title-main">Cosmic microwave background</span> Trace radiation from the early universe

The cosmic microwave background, or relic radiation, is microwave radiation that fills all space in the observable universe. With a standard optical telescope, the background space between stars and galaxies is almost completely dark. However, a sufficiently sensitive radio telescope detects a faint background glow that is almost uniform and is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the electromagnetic spectrum. The accidental discovery of the CMB in 1965 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s.

<span class="mw-page-title-main">Fred Hoyle</span> English astronomer (1915–2001)

Sir Fred Hoyle (24 June 1915 – 20 August 2001) was an English astronomer who formulated the theory of stellar nucleosynthesis and was one of the authors of the influential B2FH paper. He also held controversial stances on other scientific matters—in particular his rejection of the "Big Bang" theory (a term coined by him on BBC Radio) in favor of the "steady-state model", and his promotion of panspermia as the origin of life on Earth. He spent most of his working life at St John's College, Cambridge and served as the founding director of the Institute of Theoretical Astronomy at Cambridge.

<span class="mw-page-title-main">Ultimate fate of the universe</span> Theories about the end of the universe

The ultimate fate of the universe is a topic in physical cosmology, whose theoretical restrictions allow possible scenarios for the evolution and ultimate fate of the universe to be described and evaluated. Based on available observational evidence, deciding the fate and evolution of the universe has become a valid cosmological question, being beyond the mostly untestable constraints of mythological or theological beliefs. Several possible futures have been predicted by different scientific hypotheses, including that the universe might have existed for a finite and infinite duration, or towards explaining the manner and circumstances of its beginning.

<span class="mw-page-title-main">Non-standard cosmology</span> Models of the universe which deviate from then-current scientific consensus

A non-standard cosmology is any physical cosmological model of the universe that was, or still is, proposed as an alternative to the then-current standard model of cosmology. The term non-standard is applied to any theory that does not conform to the scientific consensus. Because the term depends on the prevailing consensus, the meaning of the term changes over time. For example, hot dark matter would not have been considered non-standard in 1990, but would have been in 2010. Conversely, a non-zero cosmological constant resulting in an accelerating universe would have been considered non-standard in 1990, but is part of the standard cosmology in 2010.

<span class="mw-page-title-main">Plasma cosmology</span> Non-standard model of the universe; emphasizes the role of ionized gases

Plasma cosmology is a non-standard cosmology whose central postulate is that the dynamics of ionized gases and plasmas play important, if not dominant, roles in the physics of the universe at interstellar and intergalactic scales. In contrast, the current observations and models of cosmologists and astrophysicists explain the formation, development, and evolution of large-scale structures as dominated by gravity.

<span class="mw-page-title-main">Discovery of cosmic microwave background radiation</span> Aspect of the history of modern physical cosmology

The discovery of cosmic microwave background radiation constitutes a major development in modern physical cosmology. In 1964, US physicist Arno Allan Penzias and radio-astronomer Robert Woodrow Wilson discovered the cosmic microwave background (CMB), estimating its temperature as 3.5 K, as they experimented with the Holmdel Horn Antenna. The new measurements were accepted as important evidence for a hot early Universe and as evidence against the rival steady state theory as theoretical work around 1950 showed the need for a CMB for consistency with the simplest relativistic universe models. In 1978, Penzias and Wilson were awarded the Nobel Prize for Physics for their joint measurement. There had been a prior measurement of the cosmic background radiation (CMB) by Andrew McKellar in 1941 at an effective temperature of 2.3 K using CN stellar absorption lines observed by W. S. Adams. Although no reference to the CMB is made by McKellar, it was not until much later after the Penzias and Wilson measurements that the significance of this measurement was understood.

<span class="mw-page-title-main">Observational cosmology</span> Study of the origin of the universe (structure and evolution)

Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors.

<span class="mw-page-title-main">Tired light</span> Class of hypothetical redshift mechanisms

Tired light is a class of hypothetical redshift mechanisms that was proposed as an alternative explanation for the redshift-distance relationship. These models have been proposed as alternatives to the models that involve the expansion of the universe. The concept was first proposed in 1929 by Fritz Zwicky, who suggested that if photons lost energy over time through collisions with other particles in a regular way, the more distant objects would appear redder than more nearby ones.

<span class="mw-page-title-main">Lambda-CDM model</span> An anomaly in astronomical observations of the Cosmic Microwave Background

The Lambda-CDM, Lambda cold dark matter, or ΛCDM model is a mathematical model of the Big Bang theory with three major components:

  1. a cosmological constant, denoted by lambda (Λ), associated with dark energy
  2. the postulated cold dark matter, denoted by CDM
  3. ordinary matter

The source counts distribution of radio-sources from a radio-astronomical survey is the cumulative distribution of the number of sources (N) brighter than a given flux density (S). As it is usually plotted on a log-log scale its distribution is known as the log N – log S plot. It is one of several cosmological tests that were conceived in the 1930s to check the viability of and compare new cosmological models.

Redshift quantization, also referred to as redshift periodicity, redshift discretization, preferred redshifts and redshift-magnitude bands, is the hypothesis that the redshifts of cosmologically distant objects tend to cluster around multiples of some particular value.

<span class="mw-page-title-main">Dennis W. Sciama</span> British physicist (1926–1999)

Dennis William Siahou Sciama, was an English physicist who, through his own work and that of his students, played a major role in developing British physics after the Second World War. He was the PhD supervisor to many famous physicists and astrophysicists, including John D. Barrow, David Deutsch, George F. R. Ellis, Stephen Hawking, Adrian Melott and Martin Rees, among others; he is considered one of the fathers of modern cosmology.

<span class="mw-page-title-main">History of the Big Bang theory</span> History of a cosmological theory

The history of the Big Bang theory began with the Big Bang's development from observations and theoretical considerations. Much of the theoretical work in cosmology now involves extensions and refinements to the basic Big Bang model. The theory itself was originally formalised by Father Georges Lemaître in 1927. Hubble's law of the expansion of the universe provided foundational support for the theory.

<span class="mw-page-title-main">Andrei Doroshkevich</span> Russian astronomer

Andrei Georgievich Doroshkevich is a Russian theoretical astrophysicist and cosmologist, head of the laboratory on the physics of the early universe at the Lebedev Physical Institute.

The Hoyle–Narlikar theory of gravity is a Machian and conformal theory of gravity proposed by Fred Hoyle and Jayant Narlikar that originally fits into the quasi steady state model of the universe.

The cosmic age problem was a historical problem in astronomy concerning the age of the universe. The problem was that at various times in the 20th century, the universe was estimated to be younger than the oldest observed stars. Estimates of the universe's age came from measurements of the current expansion rate of the universe, the Hubble constant , as well as cosmological models relating to the universe's matter and energy contents. Issues with measuring as well as not knowing about the existence of dark energy led to spurious estimates of the age. Additionally, objects such as galaxies, stars, and planets could not have existed in the extreme temperatures and densities shortly after the Big Bang.

References

  1. 1 2 Kragh, Helge (1999). Cosmology and Controversy: The Historical Development of Two Theories of the Universe. Princeton University Press. ISBN   978-0-691-02623-7.
  2. "Steady State theory". BBC. Retrieved January 11, 2015. [T]he Steady State theorists' ideas are largely discredited today...
  3. Bondi, Hermann; Gold, Thomas (1948). "The Steady-State Theory of the Expanding Universe". Monthly Notices of the Royal Astronomical Society. 108 (3): 252. Bibcode:1948MNRAS.108..252B. doi: 10.1093/mnras/108.3.252 .
  4. Hoyle, Fred (1948). "A New Model for the Expanding Universe". Monthly Notices of the Royal Astronomical Society. 108 (5): 372. Bibcode:1948MNRAS.108..372H. doi: 10.1093/mnras/108.5.372 .
  5. Kragh, Helge (2019). "Steady-State theory and the cosmological controversy". In Kragh, Helge (ed.). The Oxford handbook of the history of modern cosmology. pp. 161–205. doi:10.1093/oxfordhb/9780198817666.013.5. ISBN   978-0-19-881766-6. the Chicago astronomer William MacMillan not only assumed that stars and galaxies were distributed uniformly throughout infinite space, he also denied 'that the universe as a whole has ever been or ever will be essentially different from what it is today.'
  6. Castelvecchi, Davide (2014). "Einstein's lost theory uncovered". Nature. 506 (7489): 418–419. Bibcode:2014Natur.506..418C. doi: 10.1038/506418a . PMID   24572403.
  7. Ryle and Clarke, "An examination of the steady-state model in the light of some recent observations of radio sources," MNRAW 122 (1961) 349
  8. Gold, T.; Hoyle, F. (1 January 1959). "Cosmic rays and radio waves as manifestations of a hot universe". Ursi Symp. 1: Paris Symposium on Radio Astronomy. 9 (9): 583. Bibcode:1959IAUS....9..583G.
  9. Gould, R. J.; Burbidge, G. R. (1 November 1963). "X-Rays from the Galactic Center, External Galaxies, and the Intergalactic Medium". The Astrophysical Journal. 138: 969. Bibcode:1963ApJ...138..969G. doi:10.1086/147698. ISSN   0004-637X.
  10. Peebles, P. J. E. (2022). Cosmology's century: an inside history of our modern understanding of the universe. Princeton Oxford: Princeton University Press. ISBN   9780691196022.
  11. Weinberg, Steven (1972). Gravitation and Cosmology . John Whitney & Sons. pp.  463–464. ISBN   978-0-471-92567-5.
  12. Kragh, Helge (1996-12-31). "Chapter 7: From Controversy to Marginalization". Cosmology and Controversy. Princeton University Press. pp. 318–388. doi:10.1515/9780691227719-008. ISBN   978-0-691-22771-9.
  13. Hoyle, F.; Burbidge, G.; Narlikar, J. V. (1993). "A quasi-steady state cosmological model with creation of matter". The Astrophysical Journal . 410: 437–457. Bibcode:1993ApJ...410..437H. doi: 10.1086/172761 .
    Hoyle, F.; Burbidge, G.; Narlikar, J. V. (1994). "Astrophysical deductions from the quasi-steady state cosmology". Monthly Notices of the Royal Astronomical Society . 267 (4): 1007–1019. Bibcode:1994MNRAS.267.1007H. doi: 10.1093/mnras/267.4.1007 . hdl:11007/1133.
    Hoyle, F.; Burbidge, G.; Narlikar, J. V. (1994). "Astrophysical deductions from the quasi-steady state: Erratum". Monthly Notices of the Royal Astronomical Society . 269 (4): 1152. Bibcode:1994MNRAS.269.1152H. doi: 10.1093/mnras/269.4.1152 .
    Hoyle, F.; Burbidge, G.; Narlikar, J. V. (1994). "Further astrophysical quantities expected in a quasi-steady state Universe". Astronomy and Astrophysics . 289 (3): 729–739. Bibcode:1994A&A...289..729H.
    Hoyle, F.; Burbidge, G.; Narlikar, J. V. (1995). "The basic theory underlying the quasi-steady state cosmological model". Proceedings of the Royal Society A . 448 (1933): 191. Bibcode:1995RSPSA.448..191H. doi:10.1098/rspa.1995.0012. S2CID   53449963.
  14. Narlikar, J. V.; Vishwakarma, R. G.; Burbidge, G. (2002). "Interpretations of the Accelerating Universe". Publications of the Astronomical Society of the Pacific. 114 (800): 1092–1096. arXiv: astro-ph/0205064 . Bibcode:2002PASP..114.1092N. doi:10.1086/342374. S2CID   15456774.
  15. Hoyle, F. (1993). "Light element synthesis in Planck fireballs". Astrophysics and Space Science. 198 (2): 177–193. doi:10.1007/BF00644753. S2CID   121245869.
  16. Wright, E. L. (1994). "Comments on the Quasi-Steady-State Cosmology". Monthly Notices of the Royal Astronomical Society. 276 (4): 1421. arXiv: astro-ph/9410070 . Bibcode:1995MNRAS.276.1421W. doi: 10.1093/mnras/276.4.1421 . S2CID   118904109.
  17. Hoyle, F.; Burbidge, G.; Narlikar, J. V. (1994). "Note on a Comment by Edward L. Wright". arXiv: astro-ph/9412045 .
  18. Wright, E. L. (20 December 2010). "Errors in the Steady State and Quasi-SS Models". UCLA, Physics & Astronomy Department.

Further reading