Part of a series on |
Physical cosmology |
---|
In cosmology, a static universe (also referred to as stationary, infinite, static infinite or static eternal) is a cosmological model in which the universe is both spatially and temporally infinite, and space is neither expanding nor contracting. Such a universe does not have so-called spatial curvature; that is to say that it is 'flat' or Euclidean.[ citation needed ][ further explanation needed ] A static infinite universe was first proposed by English astronomer Thomas Digges (1546–1595). [1]
In contrast to this model, Albert Einstein proposed a temporally infinite but spatially finite model - static eternal universe - as his preferred cosmology during 1917, in his paper Cosmological Considerations in the General Theory of Relativity.
After the discovery of the redshift-distance relationship (deduced by the inverse correlation of galactic brightness to redshift) by American astronomers Vesto Slipher and Edwin Hubble, the Belgian astrophysicist and priest Georges Lemaître interpreted the redshift as evidence of universal expansion and thus a Big Bang, whereas Swiss astronomer Fritz Zwicky proposed that the redshift was caused by the photons losing energy as they passed through the matter and/or forces in intergalactic space. Zwicky's proposal would come to be termed 'tired light'—a term invented by the major Big Bang proponent Richard Tolman.
During 1917, Albert Einstein added a positive cosmological constant to his equations of general relativity to counteract the attractive effects of gravity on ordinary matter, which would otherwise cause a static, spatially finite universe to either collapse or expand forever. [2] [3] [4] This model of the universe became known as the Einstein World or Einstein's static universe.
This motivation ended after the proposal by the astrophysicist and Roman Catholic priest Georges Lemaître that the universe seems to be not static, but expanding. Edwin Hubble had researched data from the observations made by astronomer Vesto Slipher to confirm a relationship between redshift and distance, which forms the basis for the modern expansion paradigm that was introduced by Lemaître. According to George Gamow this caused Einstein to declare this cosmological model, and especially the introduction of the cosmological constant, his "biggest blunder".
Einstein's static universe is closed (i.e. has hyperspherical topology and positive spatial curvature), and contains uniform dust and a positive cosmological constant with value precisely , where is Newtonian gravitational constant, is the energy density of the matter in the universe and is the speed of light. The radius of curvature of space of the Einstein universe is equal to
The Einstein universe is one of Friedmann's solutions to Einstein's field equation for dust with density , cosmological constant , and radius of curvature . It is the only non-trivial static solution to Friedmann's equations.[ citation needed ]
Because the Einstein universe soon was recognized to be inherently unstable, it was presently abandoned as a viable model for the universe. It is unstable in the sense that any slight change in either the value of the cosmological constant, the matter density, or the spatial curvature will result in a universe that either expands and accelerates forever or re-collapses to a singularity.
After Einstein renounced his cosmological constant, and embraced the Friedmann-LeMaitre model of an expanding universe, [5] most physicists of the twentieth century assumed that the cosmological constant is zero. If so (absent some other form of dark energy), the expansion of the universe would be decelerating. However, after Saul Perlmutter, Brian P. Schmidt, and Adam G. Riess introduced the theory of an accelerating universe during 1998, a positive cosmological constant has been revived as a simple explanation for dark energy.
In 1976 Irving Segal revived the static universe in his chronometric cosmology. Similar to Zwicky, he ascribed the red shift of distant galaxies to curvature in the cosmos. Though he claimed vindication in astronomic data, others find the results to be inconclusive. [6]
In order for a static infinite universe model to be viable, it must explain three things:
First, it must explain the intergalactic redshift. Second, it must explain the cosmic microwave background radiation. Third, it must have a mechanism to re-create matter (particularly hydrogen atoms) from radiation or other sources in order to avoid a gradual 'running down' of the universe due to the conversion of matter into energy in stellar processes. [7] [8] With the absence of such a mechanism, the universe would consist of dead objects such as black holes and black dwarfs.
In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation. The opposite change, a decrease in wavelength and increase in frequency and energy, is known as a blueshift, or negative redshift. The terms derive from the colours red and blue which form the extremes of the visible light spectrum. The main causes of electromagnetic redshift in astronomy and cosmology are the relative motions of radiation sources, which give rise to the relativistic Doppler effect, and gravitational potentials, which gravitationally redshift escaping radiation. All sufficiently distant light sources show cosmological redshift corresponding to recession speeds proportional to their distances from Earth, a fact known as Hubble's law that implies the universe is expanding.
Observations show that the expansion of the universe is accelerating, such that the velocity at which a distant galaxy recedes from the observer is continuously increasing with time. The accelerated expansion of the universe was discovered in 1998 by two independent projects, the Supernova Cosmology Project and the High-Z Supernova Search Team, which used distant type Ia supernovae to measure the acceleration. The idea was that as type Ia supernovae have almost the same intrinsic brightness, and since objects that are farther away appear dimmer, the observed brightness of these supernovae can be used to measure the distance to them. The distance can then be compared to the supernovae's cosmological redshift, which measures how much the universe has expanded since the supernova occurred; the Hubble law established that the farther away that an object is, the faster it is receding. The unexpected result was that objects in the universe are moving away from one another at an accelerating rate. Cosmologists at the time expected that recession velocity would always be decelerating, due to the gravitational attraction of the matter in the universe. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery. Confirmatory evidence has been found in baryon acoustic oscillations, and in analyses of the clustering of galaxies.
Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving away from Earth. The velocity of the galaxies has been determined by their redshift, a shift of the light they emit toward the red end of the visible light spectrum. The discovery of Hubble's law is attributed to Edwin Hubble's work published in 1929.
The Friedmann–Lemaître–Robertson–Walker metric is a metric based on an exact solution of the Einstein field equations of general relativity. The metric describes a homogeneous, isotropic, expanding universe that is path-connected, but not necessarily simply connected. The general form of the metric follows from the geometric properties of homogeneity and isotropy; Einstein's field equations are only needed to derive the scale factor of the universe as a function of time. Depending on geographical or historical preferences, the set of the four scientists – Alexander Friedmann, Georges Lemaître, Howard P. Robertson and Arthur Geoffrey Walker – are variously grouped as Friedmann, Friedmann–Robertson–Walker (FRW), Robertson–Walker (RW), or Friedmann–Lemaître (FL). This model is sometimes called the Standard Model of modern cosmology, although such a description is also associated with the further developed Lambda-CDM model. The FLRW model was developed independently by the named authors in the 1920s and 1930s.
In the general theory of relativity, the Einstein field equations relate the geometry of spacetime to the distribution of matter within it.
In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe: a measurement based on direct observations of an early state of the universe, which indicate an age of 13.787±0.020 billion years as interpreted with the Lambda-CDM concordance model as of 2021; and a measurement based on the observations of the local, modern universe, which suggest a younger age. The uncertainty of the first kind of measurement has been narrowed down to 20 million years, based on a number of studies that all show similar figures for the age. These studies include researches of the microwave background radiation by the Planck spacecraft, the Wilkinson Microwave Anisotropy Probe and other space probes. Measurements of the cosmic background radiation give the cooling time of the universe since the Big Bang, and measurements of the expansion rate of the universe can be used to calculate its approximate age by extrapolating backwards in time. The range of the estimate is also within the range of the estimate for the oldest observed star in the universe.
Tired light is a class of hypothetical redshift mechanisms that was proposed as an alternative explanation for the redshift-distance relationship. These models have been proposed as alternatives to the models that involve the expansion of the universe. The concept was first proposed in 1929 by Fritz Zwicky, who suggested that if photons lost energy over time through collisions with other particles in a regular way, the more distant objects would appear redder than more nearby ones.
The expansion of the universe is parametrized by a dimensionless scale factor. Also known as the cosmic scale factor or sometimes the Robertson–Walker scale factor, this is a key parameter of the Friedmann equations.
The Lambda-CDM, Lambda cold dark matter, or ΛCDM model is a mathematical model of the Big Bang theory with three major components:
The flatness problem is a cosmological fine-tuning problem within the Big Bang model of the universe. Such problems arise from the observation that some of the initial conditions of the universe appear to be fine-tuned to very 'special' values, and that small deviations from these values would have extreme effects on the appearance of the universe at the current time.
The Friedmann equations, also known as the Friedmann–Lemaître (FL) equations, are a set of equations in physical cosmology that govern the expansion of space in homogeneous and isotropic models of the universe within the context of general relativity. They were first derived by Alexander Friedmann in 1922 from Einstein's field equations of gravitation for the Friedmann–Lemaître–Robertson–Walker metric and a perfect fluid with a given mass density ρ and pressure p. The equations for negative spatial curvature were given by Friedmann in 1924.
In cosmology, the equation of state of a perfect fluid is characterized by a dimensionless number , equal to the ratio of its pressure to its energy density : It is closely related to the thermodynamic equation of state and ideal gas law.
The history of the Big Bang theory began with the Big Bang's development from observations and theoretical considerations. Much of the theoretical work in cosmology now involves extensions and refinements to the basic Big Bang model. The theory itself was originally formalised by Father Georges Lemaître in 1927. Hubble's Law of the expansion of the universe provided foundational support for the theory.
The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion, so it does not mean that the universe expands "into" anything or that space exists "outside" it. To any observer in the universe, it appears that all but the nearest galaxies recede at speeds that are proportional to their distance from the observer, on average. While objects cannot move faster than light, this limitation applies only with respect to local reference frames and does not limit the recession rates of cosmologically distant objects.
The deceleration parameter in cosmology is a dimensionless measure of the cosmic acceleration of the expansion of space in a Friedmann–Lemaître–Robertson–Walker universe. It is defined by: where is the scale factor of the universe and the dots indicate derivatives by proper time. The expansion of the universe is said to be "accelerating" if , and in this case the deceleration parameter will be negative. The minus sign and name "deceleration parameter" are historical; at the time of definition was expected to be negative, so a minus sign was inserted in the definition to make positive in that case. Since the evidence for the accelerating universe in the 1998–2003 era, it is now believed that is positive therefore the present-day value is negative. In general varies with cosmic time, except in a few special cosmological models; the present-day value is denoted .
The Milne model was a special-relativistic cosmological model proposed by Edward Arthur Milne in 1935. It is mathematically equivalent to a special case of the FLRW model in the limit of zero energy density and it obeys the cosmological principle. The Milne model is also similar to Rindler space in that both are simple re-parameterizations of flat Minkowski space.
An inhomogeneous cosmology is a physical cosmological theory which, unlike the currently widely accepted cosmological concordance model, assumes that inhomogeneities in the distribution of matter across the universe affect local gravitational forces enough to skew our view of the Universe. When the universe began, matter was distributed homogeneously, but over billions of years, galaxies, clusters of galaxies, and superclusters have coalesced, and must, according to Einstein's theory of general relativity, warp the space-time around them. While the concordance model acknowledges this fact, it assumes that such inhomogeneities are not sufficient to affect large-scale averages of gravity in our observations. When two separate studies claimed in 1998-1999 that high redshift supernovae were further away than our calculations showed they should be, it was suggested that the expansion of the universe is accelerating, and dark energy, a repulsive energy inherent in space, was proposed to explain the acceleration. Dark energy has since become widely accepted, but it remains unexplained. Accordingly, some scientists continue to work on models that might not require dark energy. Inhomogeneous cosmology falls into this class.
Cosmic time, or cosmological time, is the time coordinate commonly used in the Big Bang models of physical cosmology. This concept of time avoids some issues related to relativity by being defined within a solution to the equations of general relativity widely used in cosmology.
The Einstein–de Sitter universe is a model of the universe proposed by Albert Einstein and Willem de Sitter in 1932. On first learning of Edwin Hubble's discovery of a linear relation between the redshift of the galaxies and their distance, Einstein set the cosmological constant to zero in the Friedmann equations, resulting in a model of the expanding universe known as the Friedmann–Einstein universe. In 1932, Einstein and De Sitter proposed an even simpler cosmic model by assuming a vanishing spatial curvature as well as a vanishing cosmological constant. In modern parlance, the Einstein–de Sitter universe can be described as a cosmological model for a flat matter-only Friedmann–Lemaître–Robertson–Walker metric (FLRW) universe.
Einstein's static universe, aka the Einstein universe or the Einstein static eternal universe, is a relativistic model of the universe proposed by Albert Einstein in 1917. Shortly after completing the general theory of relativity, Einstein applied his new theory of gravity to the universe as a whole. Assuming a universe that was static in time, and possessed of a uniform distribution of matter on the largest scales, Einstein was led to a finite, static universe of spherical spatial curvature.
Bruno is often credited with recognizing that the Copernican system allowed an infinite Universe. In truth, the idea that a heliocentric description of the solar system allowed (or at least did not rule out) an infinite Universe was first proposed by Thomas Digges in 1576 in his A Perfit Description of the Caelestial Orbes, in which Digges both presents and extends the Copernican system, suggesting that the Universe was infinite.