List of cosmic microwave background experiments

Last updated

A comparison of the sensitivity and resolution of WMAP with COBE and Penzias and Wilson's telescope, simulated data BigBangNoise.jpg
A comparison of the sensitivity and resolution of WMAP with COBE and Penzias and Wilson's telescope, simulated data

This list is a compilation of experiments measuring the cosmic microwave background (CMB) radiation anisotropies and polarization since the first detection of the CMB by Penzias and Wilson in 1964. There have been a variety of experiments to measure the CMB anisotropies and polarization since its first observation in 1964 by Penzias and Wilson. These include a mix of ground-, balloon- and space-based receivers. [2] [3] Some notable experiments in the list are COBE, which first detected the temperature anisotropies of the CMB, and showed that it had a black body spectrum; DASI, which first detected the polarization signal from the CMB; [4] CBI, which made high-resolution observations and obtained the first E-mode polarization spectrum; [5] WMAP; and the Planck spacecraft, which has produced the highest resolution all-sky map to-date of both the temperature anisotropies and polarization signals. [6] Current scientific goals for CMB observation include precise measurement of gravitational lensing, which can constrain the mass of the neutrino; and measurement of B-mode polarization as possible evidence for cosmic inflation.

Contents

The design of cosmic microwave background experiments [2] [3] [4] [7] [8] is a very challenging task. The greatest problems are the receivers, the telescope optics and the atmosphere. Many improved microwave amplifier technologies have been designed for microwave background applications. Some technologies used are HEMT, MMIC, SIS and bolometers. [8] Experiments generally use elaborate cryogenic systems to keep the amplifiers cool. Often, experiments are interferometers which only measure the spatial fluctuations in signals on the sky, and are insensitive to the average 2.7 K background. [4]

Another problem is the 1/f noise intrinsic to all detectors. Usually the experimental scan strategy is designed to minimize the effect of such noise. [7] To minimize side lobes, microwave optics usually utilize elaborate lenses and feed horns. Finally, in ground-based (and, to an extent, balloon-based) instruments, water and oxygen in the atmosphere emit and absorb microwave radiation. Even at frequencies where the atmospheric transmission is high, atmospheric emission contributes photon noise that limits the sensitivity of an experiment. CMB research therefore uses of air- and space-borne experiments, as well as dry, high altitude locations such as the Chilean Andes and the South Pole. [9]

Cosmic microwave background experiments

The list below consists of a partial list of past, current and planned CMB experiments. The name, start and end years of each experiment are given, followed by the basis of the experiment—whether space, balloon or ground based—and the location where appropriate. The frequency and amplifier technologies used are given, as is the main targets of the experiments. [10]

ImageNameStartEndBasisLocationFrequency (GHz)Detector technologyTargetsReferences
Advanced Cosmic Microwave Explorer (ACME)
Also HACME: HEMT+ACME
19881996Ground South Pole 26–35; 38–45HEMTTemperature anisotropies [10] [11]
Antarctic Plateau Anisotropy Chasing Experiment (APACHE)19951996Ground Antarctic 100, 150, 250BolometerTemperature anisotropies [10]
ARCADE Balloon.jpg Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE)20012006Balloon3, 5, 7, 10, 30, 90HEMTCMB Spectrum [10]
Archeops gondola at launch.jpg Archeops 19992002Balloon143, 217, 353, 545BolometerMeasured large and intermediate scale with improved precision at the larger scales. [10]
Arcminute Cosmology Bolometer Array Receiver (ACBAR)20012008Ground South Pole 150, 219, 274BolometerTemperature anisotropies [10]
Mrao ami lba ryle.jpg Arcminute Microkelvin Imager (AMI)2005Ground UK: Mullard Radio Astronomy Observatory 12-18Interferometer SZ effect, Temperature anisotropies [10]
Q U I JOint TEnerife (QUIJOTE)2012Ground Tenerife 11, 13, 17, 19, 30, 40Polarizer / OMTPolarization on degree angular scales [10]
ARGO 1988, 1990, 19931993Balloon150-600Bolometer [10]
AMiBA 1.jpg Array for Microwave Background Anisotropy (AMiBA)2007GroundHawaii: Mauna Loa 86-102Interferometer/MMICSZ effect; Polarization [10] [12] [13]
Atacama Bmode Search on container.JPG Atacama B-Mode Search (ABS)20122014Ground Chile: Atacama Desert 145BolometerPolarization [10] [14]
Atacama cosmology telescope night.jpg Atacama Cosmology Telescope (ACT)20082022Ground Chile: Atacama Desert 148, 218, 277BolometerSmall-scale temperature and polarization anisotropies [10]
Phot-24a-06.jpg Atacama Pathfinder Experiment (APEX)2007Ground Chile: Atacama Desert 150, 217BolometerTemperature anisotropies; SZ effect [10]
ATCA Radio Telescope Narrabri 2005 12 21.jpg Australia Telescope Compact Array (ATCA)19911997Ground Paul Wild Observatory, New South Wales, Australia8.7HEMT [10]
Background Emission Anisotropy Scanning Telescope (BEAST)2000Balloon, Ground25–35; 38-45HEMTA ground single dish CMB observatory at the University of California's White Mountain Peak Research station. [10]
Background Imaging of Cosmic Extragalactic Polarization (BICEP1)20062008Ground South Pole 100, 150, 220BolometerMeasured degree-scale polarization with improved precision. [10] [15]
BICEP2 20092012Ground South Pole 150BolometerDegree-scale B-mode polarization. [10] [16]
Keck Array 2010Ground South Pole 95, 150, 220BolometerDegree-scale B-mode polarization. [10]
Balloon-borne Anisotropy Measurement (BAM)19951998Balloon University of British Columbia and Brown University balloon experiment110-250SpectrometerUsed differential Fourier Transform Spectrometer to measure degree scale anisotropy [10] [17]
Balloon-borne Radiometers for Sky Polarisation Observations (BaR-SPoRT)CancelledBalloon32, 90Polarizer / OMT [10]
Berkeley-Illinois-Maryland Association (BIMA)19862004Ground Hat Creek Radio Observatory, California, USA70–116; 210-270SIS [10]
Boomerang Telescope.jpeg BOOMERanG experiment 19972003BalloonLong-duration balloon above Antarctica90-420BolometerIntermediate scale fluctuations [10]
B-mode RAdiation INterferometer (BRAIN)NeverGroundDome-C, Antarctica [18]
Clover CancelledGround97, 150, 230BolometerCancelled experiment to measure the small scale fluctuations and to search for B-mode polarization. [10]
Cobra19821990Sounding RocketUniversity of British Columbia27-900Bolometers/ FTSFrequency spectrum of CMB [19] [20]
Cosmic Anisotropy Polarization Mapper (CAPMAP)20022008GroundCrawford Hill Telescope, New Jersey40, 90MMIC/HEMT [10]
Cosmic Anisotropy Telescope (CAT)19941997Ground Mullard Radio Astronomy Observatory 13-17Interferometer / HEMTVery small scale fluctuations in small regions of the sky. [10]
Cosmic Background Imager.jpeg Cosmic Background Imager (CBI)20002008Ground Llano de Chajnantor Observatory, Chile26-36HEMTVery small scale temperature and polarization anisotropies in a small patch of sky. [10] [21]
CLASS Experiment Site Rendering Feb 2014.png Cosmology Large Angular Scale Surveyor (CLASS)2015Ground Llano de Chajnantor Observatory, Chile40, 90, 150, 220TES BolometerB-mode polarization signal at multipoles from 2 to 100 [10] [22]
Primordial Inflation Polarization Explorer (PIPER)FutureBalloon200, 270, 350, 800TES bolometersB-mode polarization signal [10] [23]
COSMOSOMAS 19982007Ground Teide Observatory, Tenerife, Spain10-18HEMTCircular scanning experiments for CMB and foregrounds [10] [24]
Cobe vision1.jpg Cosmic Background Explorer (COBE)19891993Space Earth orbit 31.5, 53, 90 (DMR)Temperature anisotropies; frequency power spectrum; solar system and galactic dust foregrounds. [10] [25]
Cobe vision1.jpg Cosmic Background Explorer (COBE)19891990Space Earth orbit 68-3000 200 frequencies (FIRAS)BolometersCMB Spectrum; CMB Temperature; CIB spectrum; Temperature anisotropies; frequency power spectrum; solar system and galactic dust foregrounds. [10] [25]
TRIS19942001Ground Campo Imperatore 0.6, 0.82, 2.5CMB frequency power spectrum [10] [26]
COMPASS20012001Ground Pine Bluff, Wisconsin 26 to 36HEMTPolarization on degree angular scales [27]
Cosmological Gene (CG)19992009Ground RATAN-600, Caucasus, Russia0.6 to 32HEMT [10] [28]
Degree Angular Scale Interferometer (DASI)19992003Ground South Pole 26-36HEMTTemperature and polarization anisotropy on degree angular scales [10]
The E and B Experiment (EBEX)20122013BalloonAntarctica150-450BolometerInflationary gravitational-wave background (IGB) signal in B-mode polarization [10] [29]
Far Infra-Red Survey (FIRS)19891989Balloon National Scientific Balloon Facility, Fort Sumner, New Mexico 170-680BolometerTemperature anisotropy on large angular scales. [10] [30]
KU-band Polarization IDentifier (KUPID)2003GroundCrawford Hill Telescope, New Jersey12-18HEMT [10] [31]
Medium Scale Anisotropy Measurement (MSAM)19921997Balloon150-650Bolometer [10]
MAXIMA Balloon.jpg Millimeter Anisotropy eXperiment IMaging Array (MAXIMA)1995, 1998, 19991999BalloonNear Palestine, Texas150-420BolometerIntermediate scale temperature fluctuations. [10]
Millimeter Interferometer (MINT)20012002GroundCerro Toco, Chile145SISTemperature anisotropies around multipole 1500 [10] [32]
Millimeter-Wave Bolometric Interferometer (MBI-B)FutureGround90Bolometer [10]
Mobile Anisotropy Telescope (MAT)1997, 19981998Ground Cerro Toco, Chile30-140HEMT / SIS [10] [33]
Polarization Observations of Large Angular Regions (POLAR)20002000Ground Pine Bluff, Wisconsin, USA26-46HEMTPolarization at large angular scales [10] [34]
Polarbear experiment.jpg POLARBEAR 2012GroundChajnantor plateau (Chile)150Antenna-coupled TESCMB Polarization. Primordial and lensed B-modes. [10]
Polatron NeverGround100Bolometer [10]
Princeton I, Q, and U Experiment (PIQUE)20022002Ground Princeton University 90Bolometer [10]
Python19921997Ground South Pole 30-90HEMT / BolometerTemperature anisotropy on intermediate angular scales [10] [35]
QMAP 19961996Balloon30-140HEMT / SIS [10] [36]
050128quad-from-crane.jpg QUaD 20052007Ground South Pole 100, 150BolometerPolarization at intermediate angular scale [10]
QUBIC FutureGround150, 220BolometerB-mode polarization on intermediate angular scale.[ citation needed ]
Q/U Imaging ExperimenT (QUIET)20082010Ground Llano de Chajnantor Observatory, Chile40, 90HEMT [10] [37]
RELIKT-1 19831984Space Earth orbit 37Temperature anisotropies [10]
Saskatoon experiment 19931995Ground Saskatchewan 26-46HEMT [10]
Simons Observatory 2021-Ground Atacama 27/39, 93/145, 225/280 GHzBolometersB-mode polarization, SZE galaxy clusters, sources [38]
Sky Polarization Observatory (SPOrt)CancelledSpace International Space Station 22-90Polarization [10]
South Pole Telescope 2006Ground South Pole Small scale temperature and polarization. [10]
SPIDER 2015Balloon Antarctica 90, 150, 220BolometerLarge scale polarization. [10]
Sza.gif Sunyaev-Zeldovich Array (SZA)20042008Ground Owens Valley Radio Observatory 26–36; 85-115InterferometerProduced sensitive CMB anisotropy constraints at l ~ 4000, measured the SZ effect in hundreds of galaxy clusters. Now part of CARMA [10]
MUltiplexed Squid/Tes Array for Ninety Gigahertz (MUSTANG/MUSTANG2) 2007Ground Green Bank Telescope (West Virginia, USA)90TES bolometers Sunyaev-Zeldovich effect (also used for non-CMB work) [10]
Sunyaev-Zeldovich Infrared Experiment (SuZIE)1996Ground Caltech Submillimeter Observatory, Mauna Kea, Hawaii150, 220, 350BolometerSZ effect [10]
Tenerife Experiment 19842000Ground Tenerife 10, 15, 33HEMTTemperature anisotropies from degree to arcminute angular scales [10]
TopHat 20012001Balloon Antarctica 150-720Bolometer [10] [39] [40]
Very Small Array 20022008Ground Tenerife 26-36Interferometer / HEMTIntermediate and small scale fluctuations in small regions of the sky. [10] [41]
WMAP collage.jpg Wilkinson Microwave Anisotropy Probe (WMAP)20012010Space Lagrange 2 23-94HEMTTemperature anisotropies; Polarization [10]
Planck 20092013Space Lagrange 2 30-857HEMT / BolometerTemperature and polarization anisotropies; foregrounds [10]

Related Research Articles

<span class="mw-page-title-main">Cosmic microwave background</span> Trace radiation from the early universe

The cosmic microwave background is microwave radiation that fills all space in the observable universe. It is a remnant that provides an important source of data on the primordial universe. With a standard optical telescope, the background space between stars and galaxies is almost completely dark. However, a sufficiently sensitive radio telescope detects a faint background glow that is almost uniform and is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum. The accidental discovery of the CMB in 1965 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s.

<span class="mw-page-title-main">Wilkinson Microwave Anisotropy Probe</span> NASA satellite of the Explorer program

The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe, was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic microwave background (CMB) – the radiant heat remaining from the Big Bang. Headed by Professor Charles L. Bennett of Johns Hopkins University, the mission was developed in a joint partnership between the NASA Goddard Space Flight Center and Princeton University. The WMAP spacecraft was launched on 30 June 2001 from Florida. The WMAP mission succeeded the COBE space mission and was the second medium-class (MIDEX) spacecraft in the NASA Explorer program. In 2003, MAP was renamed WMAP in honor of cosmologist David Todd Wilkinson (1935–2002), who had been a member of the mission's science team. After nine years of operations, WMAP was switched off in 2010, following the launch of the more advanced Planck spacecraft by European Space Agency (ESA) in 2009.

The Sunyaev–Zeldovich effect is the spectral distortion of the cosmic microwave background (CMB) through inverse Compton scattering by high-energy electrons in galaxy clusters, in which the low-energy CMB photons receive an average energy boost during collision with the high-energy cluster electrons. Observed distortions of the cosmic microwave background spectrum are used to detect the disturbance of density in the universe. Using the Sunyaev–Zeldovich effect, dense clusters of galaxies have been observed.

<span class="mw-page-title-main">Reionization</span> Process that caused matter to reionize early in the history of the Universe

In the fields of Big Bang theory and cosmology, reionization is the process that caused electrically neutral atoms in the universe to reionize after the lapse of the "dark ages".

Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors.

The Lambda-CDM, Lambda cold dark matter or ΛCDM model is a mathematical model of the Big Bang theory with three major components:

  1. a cosmological constant denoted by lambda (Λ) associated with dark energy,
  2. the postulated cold dark matter, and
  3. ordinary matter.
<span class="mw-page-title-main">BOOMERanG experiment</span> High-altitude balloon package measuring the universes geometry

BOOMERanG experiment was an experiment that flew a telescope on a (high-altitude) balloon and measured the cosmic microwave background radiation of a part of the sky during three sub-orbital flights. It was the first experiment to make large, high-fidelity images of the CMB temperature anisotropies, and is best known for the discovery in 2000 that the geometry of the universe is close to flat, with similar results from the competing MAXIMA experiment.

<span class="mw-page-title-main">South Pole Telescope</span> Telescope at the South Pole

The South Pole Telescope (SPT) is a 10-metre (390 in) diameter telescope located at the Amundsen–Scott South Pole Station, Antarctica. The telescope is designed for observations in the microwave, millimeter-wave, and submillimeter-wave regions of the electromagnetic spectrum, with the particular design goal of measuring the faint, diffuse emission from the cosmic microwave background (CMB). The first major survey with the SPT—designed to find distant, massive, clusters of galaxies through their interaction with the CMB, with the goal of constraining the dark energy equation of state—was completed in October 2011. In early 2012, a new camera (SPTpol) was installed on the SPT with even greater sensitivity and the capability to measure the polarization of incoming light. This camera operated from 2012–2016 and was used to make unprecedentedly deep high-resolution maps of hundreds of square degrees of the Southern sky. In 2017, the third-generation camera SPT-3G was installed on the telescope, providing nearly an order-of-magnitude increase in mapping speed over SPTpol.

<span class="mw-page-title-main">Atacama Cosmology Telescope</span> Telescope in the Atacama Desert, northern Chile

The Atacama Cosmology Telescope (ACT) was a cosmological millimeter-wave telescope located on Cerro Toco in the Atacama Desert in the north of Chile. ACT made high-sensitivity, arcminute resolution, microwave-wavelength surveys of the sky in order to study the cosmic microwave background radiation (CMB), the relic radiation left by the Big Bang process. Located 40 km from San Pedro de Atacama, at an altitude of 5,190 metres (17,030 ft), it was one of the highest ground-based telescopes in the world.

<span class="mw-page-title-main">Llano de Chajnantor Observatory</span> Observatory

Llano de Chajnantor Observatory is the name for a group of astronomical observatories located at an altitude of over 4,800 m (15,700 ft) in the Atacama Desert of northern Chile. The site is in the Antofagasta Region approximately 50 kilometres (31 mi) east of the town of San Pedro de Atacama. The exceptionally arid climate of the area is inhospitable to humans, but creates an excellent location for millimeter, submillimeter, and mid-infrared astronomy. This is because water vapour absorbs and attenuates submillimetre radiation. Llano de Chajnantor is home to the largest and most expensive astronomical telescope project in the world, the Atacama Large Millimeter Array (ALMA). Llano de Chajnantor and the surrounding area has been designated as the Chajnantor Science Reserve by the government of Chile.

The Degree Angular Scale Interferometer (DASI) was a telescope installed at the U.S. National Science Foundation's Amundsen–Scott South Pole Station in Antarctica. It was a 13-element interferometer operating between 26 and 36 GHz in ten bands. The instrument is similar in design to the Cosmic Background Imager (CBI) and the Very Small Array (VSA). In 2001 The DASI team announced the most detailed measurements of the temperature, or power spectrum of the cosmic microwave background (CMB). These results contained the first detection of the 2nd and 3rd acoustic peaks in the CMB, which were important evidence for inflation theory. This announcement was done in conjunction with the BOOMERanG and MAXIMA experiment. In 2002 the team reported the first detection of polarization anisotropies in the CMB.

QMAP was a balloon experiment to measure the anisotropy of the cosmic microwave background (CMB). It flew twice in 1996, and was used with an interlocking scan of the skies to produce CMB maps at angular scales between 0.7° and 9°.

<span class="mw-page-title-main">QUIET</span>

QUIET was an astronomy experiment to study the polarization of the cosmic microwave background radiation. QUIET stands for Q/U Imaging ExperimenT. The Q/U in the name refers to the ability of the telescope to measure the Q and U Stokes parameters simultaneously. QUIET was located at an elevation of 5,080 metres at Llano de Chajnantor Observatory in the Chilean Andes. It began observing in late 2008 and finished observing in December 2010.

<span class="mw-page-title-main">Steady-state model</span> Model of the universe – alternative to the Big Bang model

In cosmology, the steady-state model or steady state theory is an alternative to the Big Bang theory. In the steady-state model, the density of matter in the expanding universe remains unchanged due to a continuous creation of matter, thus adhering to the perfect cosmological principle, a principle that says that the observable universe is always the same at any time and any place.

<span class="mw-page-title-main">BICEP and Keck Array</span> Series of cosmic microwave background experiments at the South Pole

BICEP and the Keck Array are a series of cosmic microwave background (CMB) experiments. They aim to measure the polarization of the CMB; in particular, measuring the B-mode of the CMB. The experiments have had five generations of instrumentation, consisting of BICEP1, BICEP2, the Keck Array, BICEP3, and the BICEP Array. The Keck Array started observations in 2012 and BICEP3 has been fully operational since May 2016, with the BICEP Array beginning installation in 2017/18.

<span class="mw-page-title-main">POLARBEAR</span>

POLARBEAR is a cosmic microwave background polarization experiment located in the Atacama Desert of northern Chile in the Antofagasta Region. The POLARBEAR experiment is mounted on the Huan Tran Telescope (HTT) at the James Ax Observatory in the Chajnantor Science Reserve. The HTT is located near the Atacama Cosmology Telescope on the slopes of Cerro Toco at an altitude of nearly 5,200 m (17,100 ft).

Searches for Lorentz violation involving photons provide one possible test of relativity. Examples range from modern versions of the classic Michelson–Morley experiment that utilize highly stable electromagnetic resonant cavities to searches for tiny deviations from c in the speed of light emitted by distant astrophysical sources. Due to the extreme distances involved, astrophysical studies have achieved sensitivities on the order of parts in 1038.

<span class="mw-page-title-main">Cosmology Large Angular Scale Surveyor</span> Microwave telescope array in Chile

The Cosmology Large Angular Scale Surveyor (CLASS) is an array of microwave telescopes at a high-altitude site in the Atacama Desert of Chile as part of the Parque Astronómico de Atacama. The CLASS experiment aims to improve our understanding of cosmic dawn when the first stars turned on, test the theory of cosmic inflation, and distinguish between inflationary models of the very early universe by making precise measurements of the polarization of the Cosmic Microwave Background (CMB) over 65% of the sky at multiple frequencies in the microwave region of the electromagnetic spectrum.

<span class="mw-page-title-main">Crossed Dragone</span>

The Crossed Dragone Telescope is an off-axis telescope design consisting of a parabolic primary mirror and a large concave secondary mirror arranged so that the focal plane is at right angles to the incoming light. In this configuration the polarization of light is preserved through the optics.

In cosmological inflation, within the slow-roll paradigm, the Lyth argument places a theoretical upper bound on the amount of gravitational waves produced during inflation, given the amount of departure from the homogeneity of the cosmic microwave background (CMB).

References

  1. "A Brief History of Background Radiation". WMAP image gallery. Nasa GSFC. Retrieved 26 July 2015.
  2. 1 2 Galli, Silvia; Melchiorri, Alessandro; Pagano, Luca; Sherwin, Blake D.; Spergel, David N. (December 2010). "Constraining fundamental physics with future CMB experiments". Phys. Rev. D. 82 (12): 123504. arXiv: 1005.3808 . Bibcode:2010PhRvD..82l3504G. doi:10.1103/PhysRevD.82.123504. S2CID   118531614.
  3. 1 2 Lawrence, Charles (April 2006). Ongoing and future ground-based and balloon-borne CMB temperature and polarization experiments. CMB and Physics of the Early Universe (CMB2006). Ischia, Italy: Proceedings of Science. p. 12. Bibcode:2006cmb..confE..12L.
  4. 1 2 3 Hanany, Shaul; Niemack, Michael D.; Page, Lyman (2013). "CMB Telescopes and Optical Systems". Planets, Stars and Stellar Systems. pp. 431–480. arXiv: 1206.2402 . Bibcode:2013pss1.book..431H. doi:10.1007/978-94-007-5621-2_10. ISBN   978-94-007-5620-5. S2CID   119280576.
  5. Readhead, A (2004). "Polarization Observations with the Cosmic Background Imager". Science. 306 (5697): 836–844. arXiv: astro-ph/0409569 . Bibcode:2004Sci...306..836R. doi:10.1126/science.1105598. PMID   15472038. S2CID   9234000.
  6. Olive, K.A. (2014). "Review of Particle Physics". Chinese Physics C. 38 (9): 090001. arXiv: 1412.1408 . Bibcode:2014ChPhC..38i0001O. doi:10.1088/1674-1137/38/9/090001. ISSN   1674-1137. S2CID   118395784.
  7. 1 2 Tegmark, Max (1997). "CMB mapping experiments: A designer's guide". Physical Review D. 56 (8): 4514–4529. arXiv: astro-ph/9705188 . Bibcode:1997PhRvD..56.4514T. doi:10.1103/PhysRevD.56.4514. ISSN   0556-2821. S2CID   31148200.
  8. 1 2 Smoot, George F. (2000). "CMB anisotropy experiments". Physics Reports. 333–334: 269–308. Bibcode:2000PhR...333..269S. doi:10.1016/S0370-1573(00)00026-0. ISSN   0370-1573.
  9. Errard, J; et al. (10 August 2015). "Modeling atmospheric emission for CMB ground-based observations". Astrophysical Journal. 809 (1): 63. arXiv: 1501.07911 . Bibcode:2015ApJ...809...63E. doi:10.1088/0004-637X/809/1/63. S2CID   118428880.
  10. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 "LAMBDA — CMB Experiments". 2012-12-07. Retrieved 2015-07-21.
  11. Schuster, Jeffrey; Gaier, Todd; Gundersen, Joshua; Meinhold, Peter; Hoch, Timothy; Seiffert, Michael; Wuensche, Carlos A.; Lubin, Philip (1993). "Cosmic background radiation anisotropy at degree angular scales - Further results from the South Pole". The Astrophysical Journal Letters. 412: L47–L50. Bibcode:1993ApJ...412L..47S. doi:10.1086/186937. ISSN   0004-637X.
  12. Ho, Paul; et al. (2009). "The Yuan-Tseh Lee Array for Microwave Background Anisotropy". The Astrophysical Journal. 694 (2): 1610–1618. arXiv: 0810.1871 . Bibcode:2009ApJ...694.1610H. doi:10.1088/0004-637X/694/2/1610. S2CID   118574112.
  13. Wu, Jiun-Huei Proty; et al. (2008). "AMiBA Observations, Data Analysis and Results for Sunyaev-Zel'dovich Effects". arXiv: 0810.1015 [astro-ph].
  14. Simon, S.M.; et al. (ABS collaboration) (June 2013). Early Results from the First Year of Observations by the Atacama B-mode Search (ABS). AAS Meeting #222, #119.06. American Astronomical Society. Bibcode:2013AAS...22211906S.
  15. Barkats, Denis; Aikin, R.; Bischoff, C.; Buder, I.; Kaufman, J. P.; Keating, B. G.; Kovac, J. M.; Su, M.; Ade, P. A. R.; Battle, J. O.; Bierman, E. M.; Bock, J. J.; Chiang, H. C.; Dowell, C. D.; Duband, L.; Filippini, J.; Hivon, E. F.; Holzapfel, W. L.; Hristov, V. V.; Jones, W. C.; Kuo, C. L.; Leitch, E. M.; Mason, P. V.; Matsumura, T.; Nguyen, H. T.; Ponthieu, N.; Pryke, C.; Richter, S.; Rocha, G.; Sheehy, C.; Kernasovskiy, S. S.; Takahashi, Y. D.; Tolan, J. E.; Yoon, K. W.; et al. (BICEP1 collaboration) (March 2014). "Degree-scale Cosmic Microwave Background Polarization Measurements from Three Years of BICEP1 Data". Astrophysical Journal. 783 (2): 67. arXiv: 1310.1422 . Bibcode:2014ApJ...783...67B. doi:10.1088/0004-637X/783/2/67. S2CID   18249581.
  16. Ade, P. A. R.; Aikin, R. W.; Amiri, M.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Bock, J. J.; Brevik, J. A.; Buder, I.; Bullock, E.; Davis, G.; Day, P. K.; Dowell, C. D.; Duband, L.; Filippini, J. P.; Fliescher, S.; Golwala, S. R.; Halpern, M.; Hasselfield, M.; Hildebrandt, S. R.; Hilton, G. C.; Irwin, K. D.; Karkare, K. S.; Kaufman, J. P.; Keating, B. G.; Kernasovskiy, S. A.; Kovac, J. M.; Kuo, C. L.; Leitch, E. M.; Llombart, N.; Lueker, M.; Netterfield, C. B.; Nguyen, H. T.; O'Brient, R.; Ogburn, R. W.; Orlando, A.; Pryke, C.; Reintsema, C. D.; Richter, S.; Schwarz, R.; Sheehy, C. D.; Staniszewski, Z. K.; Story, K. T.; Sudiwala, R. V.; Teply, G. P.; Tolan, J. E.; Turner, A. D.; Vieregg, A. G.; Wilson, P.; Wong, C. L.; Yoon, K. W.; et al. (BICEP1 collaboration) (2014). "BICEP2. II. Experiment and three-year data set". The Astrophysical Journal. 792 (1): 62. arXiv: 1403.4302 . Bibcode:2014ApJ...792...62B. doi:10.1088/0004-637X/792/1/62. ISSN   1538-4357. S2CID   18486247.
  17. "Balloon-Borne Anisotropy Measurement (BAM)". Brown University. 2002. Retrieved 22 July 2015.
  18. Polenta, G.; P. A. R., Ade; J., Bartlett; E., Bréelle; L., Conversi; P., de Bernardis; C., Dufour; M., Gervasi; M., Giard; C., Giordano; Y., Giraud-Heraud; B., Maffei; S., Masi; F., Nati; A., Orlando; S., Peterzen; F., Piacentini; M., Piat; L., Piccirillo; G., Pisano; R., Pons; C., Rosset; G., Savini; G., Sironi; A., Tartari; M., Veneziani; M., Zannoni (March 2007). "The BRAIN CMB polarization experiment" (PDF). New Astronomy Reviews. 51 (3–4): 256. Bibcode:2007NewAR..51..256P. doi:10.1016/j.newar.2006.11.065. hdl: 10281/3018 .
  19. Gush, H.P.; Halpern, M. (1992). "Cooled submillimeter Fourier transform spectrometer flown on a rocket". Rev. Sci. Instrum. 63 (6): 3249. Bibcode:1992RScI...63.3249G. doi:10.1063/1.1142534.
  20. Gush, H.P.; Halpern, M.; Wishnow, E.H. (July 1990). "Rocket measurement of the cosmic-background-radiation mm-wave spectrum". Phys. Rev. Lett. 65 (5): 537–540. Bibcode:1990PhRvL..65..537G. doi:10.1103/PhysRevLett.65.537. PMID   10042948.
  21. Taylor, Angela C.; Jones, Michael E.; Allison, James R.; Angelakis, Emmanouil; Bond, J. Richard; Bronfman, Leonardo; Bustos, Ricardo; Davis, Richard J.; Dickinson, Clive; Leech, Jamie; Mason, Brian S.; Myers, Steven T.; Pearson, Timothy J.; Readhead, Anthony C. S.; Reeves, Rodrigo; Shepherd, Martin C.; Sievers, Jonathan L. (2011). "The Cosmic Background Imager 2". Monthly Notices of the Royal Astronomical Society. 418 (4): 2720–2729. arXiv: 1108.3950 . Bibcode:2011MNRAS.418.2720T. doi:10.1111/j.1365-2966.2011.19661.x. ISSN   0035-8711. S2CID   2703946.
  22. Essinger-Hileman, Thomas; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F.; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakla, John; Kogut, Alan J.; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Miller, Amber D.; Miller, Nathan; Moseley, Samuel H.; Novak, Giles; Reintsema, Carl; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wagner, Emily; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen; et al. (CLASS Collaboration) (23 July 2014). Holland, Wayne S; Zmuidzinas, Jonas (eds.). "CLASS: the cosmology large angular scale surveyor". Proc. SPIE 9153, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. 9153: 91531I. arXiv: 1408.4788 . Bibcode:2014SPIE.9153E..1IE. doi:10.1117/12.2056701. S2CID   13691600.
  23. Lazear, Justin; Ade, Peter A. R.; Benford, Dominic; Bennett, Charles L.; Chuss, David T.; Dotson, Jessie L.; Eimer, Joseph R.; Fixsen, Dale J.; Halpern, Mark; Hilton, Gene; Hinderks, James; Hinshaw, Gary F.; Irwin, Kent; Jhabvala, Christine; Johnson, Bradley; Kogut, Alan; Lowe, Luke; McMahon, Jeff J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey; Rodriguez, Samelys; Sharp, Elmer; Staguhn, Johannes G.; Switzer, Eric R.; Tucker, Carole E.; Weston, Amy; Wollack, Edward J. (2014). "The Primordial Inflation Polarization Explorer (PIPER)". In Holland, Wayne S; Zmuidzinas, Jonas (eds.). Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. Vol. 9153. pp. 91531L. arXiv: 1407.2584 . doi:10.1117/12.2056806. S2CID   2510422.
  24. "The COSMOSOMAS Experiment (1998-2007)". Instituto de Astrofísica de Canarias. Retrieved 24 July 2015.
  25. 1 2 "Cosmic Background Explorer". LAMBDA. Goddard Spaceflight Center.
  26. Zannoni, M.; Tartari, A.; Gervasi, M.; Boella, G.; Sironi, G.; De Lucia, A.; Passerini, A.; Cavaliere, F. (2008). "TRIS. I. Absolute Measurements of the Sky Brightness Temperature at 0.6, 0.82, and 2.5 GHz". The Astrophysical Journal. 688 (1): 12–23. arXiv: 0806.1415 . Bibcode:2008ApJ...688...12Z. doi:10.1086/592133. S2CID   55948501.
  27. Farese, Philip C.; Dall’Oglio, Giorgio; Gundersen, Joshua O.; Keating, Brian G.; Klawikowski, Slade; Knox, Lloyd; Levy, Alan; Lubin, Philip M.; O’Dell, Chris W.; Peel, Alan; Piccirillo, Lucio; Ruhl, John; Timbie, Peter T. (2004). "COMPASS: An Upper Limit on Cosmic Microwave Background Polarization at an Angular Scale of 20′". The Astrophysical Journal. 610 (2): 625–634. arXiv: astro-ph/0308309 . Bibcode:2004ApJ...610..625F. doi:10.1086/421837. ISSN   0004-637X. S2CID   119404616.
  28. Parijskij, Yu. N.; Mingaliev, M. G.; Nizhel’skii, N. A.; Bursov, N. N.; Berlin, A. B.; Grechkin, A. A.; Zharov, V. I.; Zhekanis, G. V.; Majorova, E. K.; Semenova, T. A.; Stolyarov, V. A.; Tsybulev, P. G.; Kratov, D. V.; Udovitskii, R. Yu.; Khaikin, V. B. (2011). "Multi-frequency survey of background radiations of the Universe. The "Cosmological Gene" project. First results". Astrophysical Bulletin. 66 (4): 424–435. Bibcode:2011AstBu..66..424P. doi:10.1134/S1990341311040043. ISSN   1990-3413. S2CID   123152017.
  29. MacDermid, Kevin; EBEX Collaboration (2014-07-23). Holland, Wayne S.; Zmuidzinas, Jonas (eds.). "The performance of the bolometer array and readout system during the 2012/2013 flight of the E and B experiment (EBEX)". Proc. SPIE 9153, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. 9153: 915311. arXiv: 1407.6894 . Bibcode:2014SPIE.9153E..11M. doi:10.1117/12.2056267. S2CID   118399923.
  30. Meyer, Stephan S.; Cheng, Edward S.; Page, Lyman A. (1991). "A measurement of the large-scale cosmic microwave background anisotropy at 1.8 millimeter wavelength". The Astrophysical Journal. 371: L7. Bibcode:1991ApJ...371L...7M. doi: 10.1086/185989 . ISSN   0004-637X.
  31. "Ku-band Polarization Identifier at the University of Miami". University of Miami.
  32. Fowler, J. W.; Doriese, W. B.; Marriage, T. A.; Tran, H. T.; Aboobaker, A. M.; Dumont, C.; Halpern, M.; Kermish, Z. D.; Loh, Y.-S.; Page, L. A.; Staggs, S. T.; Wesley, D. H. (2005). "CMB Observations with a Compact Heterogeneous 150 GHz Interferometer in Chile". The Astrophysical Journal Supplement Series. 156 (1): 1–11. arXiv: astro-ph/0403137 . Bibcode:2005ApJS..156....1F. doi:10.1086/426393. S2CID   10422803.
  33. "The MAT Experiment". Archived at NASA GSFC.
  34. O'Dell, Chris. "POLAR: Polarization Observations of Large Angular Regions". Archived at NASA GSFC. Retrieved 25 July 2015.
  35. "CARA Science: Python". University of Chicago.
  36. Page, Lyman; de Oliveira-Costa, Angelica. "QMAP". Princeton University. Retrieved 25 July 2015.
  37. "QUIET: Site". QUIET collaboration. 27 January 2008. Retrieved 2015-07-23.
  38. "Hunt for Big Bang Gravitational Waves Gets $40-Million Boost". Scientific American. Retrieved 5 March 2017.
  39. Silverberg, Robert F.; Aguirre, James; Bezaire, Jeff; Cheng, Edward S.; Christensen, Per Rex; Cordone, Shawn; Cottingham, David A.; Crawford, Thomas; Fixsen, Dale J.; Kenny, P.; Knox, Lloyd; Kristensen, Rene Engel; Meyer, Stephan; Noergaard-Nielsen, Hans Ulrich; Timbie, Peter T.; Wilson, Grant W.; et al. (TopHat Collaboration) (2003). Melugin, Ramsey K; Roeser, Hans-Peter (eds.). "The long duration flight of the TopHat experiment". Proc. SPIE 4857, Airborne Telescope Systems II. Airborne Telescope Systems II. 4857: 195–204. Bibcode:2003SPIE.4857..195S. doi:10.1117/12.458649. S2CID   6509369.
  40. Silverberg, R.F.; E. S., Cheng; J. E., Aguirre; J. J., Bezaire; T. M., Crawford; S. S., Meyer; A., Bier; B., Campano; T. C., Chen; D. A., Cottingham; E. H., Sharp; P. R., Christensen; S., Cordone; P. T., Timbie; R. E., Dame; D. J., Fixsen; R. J. K., Kristensen; H. U., Nørgaard-Nielsen; G. W., Wilson; et al. (TopHat Collaboration) (September 2005). "The TopHat Experiment: A Balloon-borne Instrument for Mapping Millimeter and Submillimeter Emission". The Astrophysical Journal Supplement Series. 160 (1): 59–75. Bibcode:2005ApJS..160...59S. doi: 10.1086/432117 .
  41. Tibbs, Christopher T.; Watson, Robert A.; Dickinson, Clive; Davies, Rodney D.; Davis, Richard J.; del Burgo, Carlos; Franzen, Thomas M. O.; Genova-Santos, Ricardo; Grainge, Keith; Hobson, Michael P. (2010). "VSA Observations of the Anomalous Microwave Emission in the Perseus Region". Mon. Not. R. Astron. Soc. 402 (3): 1969–1979. arXiv: 0909.4682 . Bibcode:2010MNRAS.402.1969T. doi:10.1111/j.1365-2966.2009.16023.x. S2CID   18987830.

Further reading